instruction to students as they progress through the senior capstone project and develop relationships with project stakeholders in industry. She also supports engineering communications program development, research, and implementation. In addition to her Ph. D. research interests in service learning, program de- sign, and qualitative research, she is also collaborating on research in the areas of communications-related success factors of recent engineering graduates in industry and effective tools for instructors of integrated engineering and communications courses. Donald Heer: Donald Heer received his B.S. and M.S. degrees in Computer Engineering from Oregon State University in 2001 and 2003, respectively. In 2003, Mr
agencies, national labs, and non-profits. We have established a purpose-built model to accel- erate Cincinnati as a talent hub and beacon for innovation–in years, not decades.Josefine Fleetwood, Oregon State University American c Society for Engineering Education, 2021 Virtual Internships: Accelerating Opportunity Through Disruption Abstract Experiential learning programs like internships and capstone projects are high-impact practices that allow engineering students to build a professional network, apply technical skills in a real-world context, and
ifthey were hiring students for the summer and if not, provided a research project that could be ofinterest to the student. The LSAMP program provided potential support network contacts anddemonstrated the organization and flow of work within a modern research laboratory. Thesophomore seminar concentrated on communication skills and career selection.During the summer before their junior year, students typically conducted their own researchproject in a Multidisciplinary Engineering Research Fellowship (MERF). The MERF experiencewas crafted to resemble the capstone experience included in most STEM majors and provide aforeshadowing of the same project management and people skills necessary to be successful inindustry [18] [19]. The junior seminar
project based learning on leadership abilities and communication skills,” in 47th ASC Annual International Conference Proceedings, 2011.[18] A. Ayob, R. A. Majid, A. Hussain, and M. M. Mustaffa, “Creativity enhancement through experiential learning,” Adv. Nat. Appl. Sci., vol. 6, no. 2, pp. 94–99, 2012.[19] N. Hotaling, B. B. Fasse, L. F. Bost, C. D. Hermann, and C. R. Forest, “A Quantitative Analysis of the Effects of a Multidisciplinary Engineering Capstone Design Course,” J. Eng. Educ., vol. 101, no. 4, pp. 630–656, 2012.[20] K. Evans and F. Reeder, A Human Capital Crisis in Cybersecurity: Technical Proficiency Matters. Washington, DC: Center for Strategic & International Studies, 2010.[21] Cyber
considered. Potential topics for future investigation are also identified.2. BackgroundThis section provides background on prior work in three relevant areas. First, REU sites aredescribed. Next, prior work on experiential education, project-based learning and theirassessment is reviewed. Finally, prior research on cohort-creation and team bonding for college-age students is presented.2.1. REU sitesThe National Science Foundation REU program brings together cohorts of undergraduatestudents to study topics within NSF supported disciplines. Many REU sites have an overarchingtheme to them that relates to a sub-discipline or interdisciplinary collaboration.REU sites inherently vary from institution to institution, as each institution proposes
our students. Each year, engineeringstudents complete approximately 30 senior capstone projects for a variety of businesses. In anygiven semester, over 150 engineering students are out in the work-place on one of their three co-op rotations. Internships in other disciplines drives the number of students to over 300. Withoutour industry partners, we would be unable to provide authentic projects for students or ensurethat they graduate with real-world employment experience.One of the major challenges in getting a mandatory co-op program up and running was buildingour employer network and helping them to understand the benefits of the co-op model. SincePCEC’s co-op model is rare among universities, many companies had no experience workingwith
International Conference Proceedings, 2011.[18] A. Ayob, R. A. Majid, A. Hussain, and M. M. Mustaffa, “Creativity enhancement through experiential learning,” Adv. Nat. Appl. Sci., vol. 6, no. 2, pp. 94–99, 2012.[19] Y. Doppelt, “Implementation and assessment of project-based learning in a flexible environment,” Int. J. Technol. Des. Educ., vol. 13, no. 3, pp. 255–272, 2003.[20] N. Hotaling, B. B. Fasse, L. F. Bost, C. D. Hermann, and C. R. Forest, “A Quantitative Analysis of the Effects of a Multidisciplinary Engineering Capstone Design Course,” J. Eng. Educ., vol. 101, no. 4, pp. 630–656, 2012.[21] F. Coffield, D. Moseley, E. Hall, and K. Ecclestone, Learning styles and pedagogy in post-16 learning: a
countries’ higher education intra-period digital pedagogy responses,” J. Appl. Learn., vol. 3, no. 1, 2020, doi: 10.37074/jalt.2020.3.1.7.[10] A. Friesel, “Proposal for accreditation procedure to support the development of skills and competencies in globalized engineering world,” Jun. 2014, doi: 10.18260/1-2--17196.[11] P. Caratozzolo and A. Alvarez, “A new transdisciplinary approach to foster soft skills in engineering : Using critical reading micro-workshops,” 2019, doi: 10.1109/WEEF-GEDC.2018.8629775.[12] P. A. Sanger, A. Friesel, H. Geraedts, L. E. Quineche Orellana, R. Canahuire, and F. Berry, “International Capstone Student Projects Giving Real World, Global Team Experiences,” Nov. 2018, doi: 10.1109/EAEEIE
learning to usethe practices that engineers use to solve problems. Undergraduate engineering programs all haveintended learning outcomes aimed at these practices, such as “an ability to design and conductexperiments, as well as to analyze and interpret data” and “an ability to design a system,component, or process to meet desired needs within realistic constraints” [10]. As noted above,these practices are highly valued by employers, who note that recent college graduates often lackproficiency with these practices [11]. The ideal place to learn these practices is in the real world,making capstone projects, internships, and other activities that require students to work onauthentic problems highly valued experiences. However, putting students in the
societal challenges; and 4)perform data collection, analysis and presentation in order to answer research questions andshare research results with a professional audience. The course also emphasized critical thinking,multidisciplinary perspectives, leadership and team-based problem solving. To achieve thecourse learning objectives, the course focused on problems associated with an aging sewersystem, generally, and the lack of local sewer infrastructure data, specifically. This course wasexperimental in that it introduced design thinking through an experiential learning project earlyin engineering students’ academic careers. Traditionally, design capstone courses are offeredtoward the end of students’ course of study after core courses and textbook