Paper ID #36751Using Academic Controversy in a Computer Science UndergraduateLeadership Course: An Effective Approach to Examine Ethical Issues inComputer ScienceMariana A. AlvidrezDr. Elsa Q. Villa, University of Texas, El Paso Elsa Q. Villa, Ph.D., is a research assistant professor at The University of Texas at El Paso (UTEP) in the College of Education, and is Director of the Hopper-Dean Center of Excellence for K-12 Computer Science Education. Dr. Villa received her doctoral degree in curriculum and instruction from New Mexico State University; she received a Master of Science degree in Computer Science and a Master of
Paper ID #43435Anti-racism, Inclusion, Diversity and Equity in Database Curriculum ThroughGroup Research Projects on Historical, Social and Ethical Database RelatedTopicsDr. Ioulia Rytikova, George Mason University Ioulia Rytikova is a Professor and an Associate Chair for Graduate Studies in the Department of Information Sciences and Technology at George Mason University. She received a B.S./M.S. and Ph.D. degrees in Automated Control Systems Engineering and Information Processing. Her research interests lie at the intersection of Data Science and Big Data Analytics, Cognitive and Learning Sciences, Educational Data Mining
Shaffer, Lipscomb UniversityDr. Elizabeth Buchanan, Marshfield Clinic Research Institute Elizabeth Buchanan PhD is Director of the Office of Research Support Services and Senior Research Scientist at the Marshfield Clinic Research Institute. For over twenty years, Elizabeth’s scholarship has focused on research ethics, compliance and regulations, specifically around Internet, social media, and big data research. In these areas, she has written guidelines for IRBs/REBs, contributed to the Secretary’s Advisory Committee to the Office of Human Research Protections (SACHRP) in 2013, and was co-author to the 2012 Association of Internet Researchers Ethics Guidelines. Elizabeth serves as faculty at the Fordham University’s
,feeding to their fear about saying the wrong thing.The disconnect between the two groups often results in explicitly marginalizing classroomenvironments, i.e., environments where students feel unwelcome from blatantly marginalizing ordiscriminatory behaviors [1]. The data demonstrates that faculty are interested in developingimplicitly inclusive classrooms but fear that their lack of expertise on these topics will lead tofailure and having a negative impact on students. However, students voiced strong support andinterest in having faculty discuss and teach about inclusivity and ethics in their engineeringclassrooms. To create implicitly inclusive environments, faculty are encouraged to acknowledgeand discuss such topics in their classes and
, makers, designers, and technologists. Currently, she is part of a team setting up the Human-Centered Engineering program at Boston College. American c Society for Engineering Education, 2021 Critical perspectives on teaching design in first-year engineeringIntroductionTo engineer is to bring science and technology into a society filled with competing economic,ethical, and political influences. Yet still, engineering programs teach technical content asseparate from their historical, social, and economic contexts, which creates a duality betweenthe technical and social (Cech, 2014; Faulkner, 2000; Leydens & Lucena, 2017). As studentslearn and practice
EJE's relevance in addressing sustainability and social equity. By promotinginclusive pedagogical approaches and continuous reflection, we aim to equip students with theskills to design ethical engineering solutions. Through collective efforts, we aspire to contributeto a more sustainable and equitable future, fostering understanding and action in EnvironmentalJustice Education.Key words: Environmental Justice, Equity, Engineering Education IntroductionThe purpose of this Work in Progress research paper and ECSJ-DEED joint technical session isto highlight the crucial role of Environmental Justice Education (EJE) in bridging the gapbetween educators and students, particularly in the context of engineering
applicationexploration/storytelling.Conclusion: Through the use of examples, personal interactions, and application or classroomcontext-based anecdotes, faculty are already creating authentic microcosms of inclusiveclassrooms and are struggling to articulate how they do it to administrators and ABET. Wesuggest these resultant methods be used to create microinsertions of ethics and social impacts asone strategy for minimizing the technical/social dualism present in most curriculum [6], [7]which we hope will prove a rigorous strategy for the eventual full integration of sociotechnicalapproaches to problem solving in engineering education.IntroductionThere is a lack of consistency concerning integrating social impacts fully into technical lessons,modules, courses
towards JEDI in engineering practices. Particularly, students will learn about the historical temporal dimension of engineering and social justice through a series of case studies, recognizing that the impacts of engineering span multiple generations, irrespective of whether these effects are positive or negative. This realization will empower students with a sense of continuity and a need for collective efforts, it will enable them to break the barriers of individual accountability, micro-ethics, and direct causality commonly established in engineering practice [17]. This mindset shift acknowledges the need for continued social justice work beyond individual lifetimes, fostering a sense of interconnectedness and
Infrastructure Inequities: A Pilot StudyAbstractAs social justice issues facing our nation continue to be placed in the foreground of everydaylife, it is important to understand how undergraduate civil engineering students perceive andunderstand relations between social justice and our infrastructure systems. Additionally, as morecivil engineering undergraduate programs increase the emphasis on ethics and equity issues intheir curricula, we must also seek to understand students’ awareness of their influence, as civilengineering professionals, to improve infrastructure systems that contribute to injustice andinequity.This paper presents findings from a pilot study conducted as part of an NSF-funded grantimplementing cultural and curricular changes in a
inclusion, Asian American Studies, Critical Mixed Race Studies, engineering ethics, and pop culture.Dr. Qin Zhu, Virginia Tech Dr. Zhu is Associate Professor in the Department of Engineering Education and Affiliate Faculty in the Department of Science, Technology & Society and the Center for Human-Computer Interaction at Vir- ginia Tech. Dr. Zhu is also serving as Associate Editor for Science and Engineering Ethics, Associate Editor for Studies in Engineering Education, Editor for International Perspectives at the Online Ethics Center for Engineering and Science, and Executive Committee Member of the International Society for Ethics Across the Curriculum. Dr. Zhu’s research interests include engineering ethics
degree-seeking years [13], to the inseparable impact of the state of the world onto the state of theclassroom (especially students who do not fit the tradition and dominant paradigm of white andmale-presenting) [14]. Microaggressions have been revealed to have an intense net-negativeeffect on people from marginalized communities working and studying in academic spacesperpetuated by systemic social structures that reinforce white-body supremacy [15]. Work tocounter legacy or traditional pedagogical practices where technical course topics are siloed fromhumanitarian efforts include the sociotechnical integration of human-centered design withengineering coursework [16], and discursive “micro-insertions” of ethics into technical coursesfor a
; engineering ethics; and pop culture.Dr. Qin Zhu, Virginia Polytechnic Institute and State University Dr. Zhu is Associate Professor in the Department of Engineering Education and Affiliate Faculty in the Department of Science, Technology & Society and the Center for Human-Computer Interaction at Virginia Tech. Dr. Zhu is also an Affiliate Researcher at the Colorado School of Mines. Dr. Zhu is Editor for International Perspectives at the Online Ethics Center for Engineering and Science, Associate Editor for Engineering Studies, and Executive Committee Member of the International Society for Ethics Across the Curriculum. Dr. Zhu’s research interests include global and international engineering education, engineering
research project teamsto enact a significant change in scientific knowledge and positively impact society. Beyond therhetoric of research productivity, facilitating diversity in engineering programs and professionswould help raise individuals’ ethical awareness and commitment to engineering ethics. Previousstudies confirm that individuals from diverse life experiences and cultural backgrounds offervaried perspectives and help create a fertile ground for deeper reflections and perspectivechanges [2]. Students of color tend to be more aware of ethics and moral principles based ontheir lived experiences with social prejudices and inequity (Thoman et al., 2015). Therefore, theywill likely develop a strong ethical stance that challenges the observed
address both the ABET Student Outcomes and the “leakypipeline” issue, Penn State’s College of Engineering 2020-2025 Strategic Plan identified theintegration of ethics, inclusivity, and sustainability into undergraduate programs throughout thecollege as one of its primary unit objectives [11]. This emphasis updates and directlyimplements Penn State’s 2016-2020 University-wide Strategic Plan, which clearly highlightsdiversity as one of its core foundations [12]. In the Aerospace Engineering Department, seniorundergraduate capstone courses offer ideal conditions for exploring, learning about, andpracticing Diversity, Equity, Inclusion (DEI) skills that promote inclusive and collaborativeclimates since these classes are team-based experiential
. 4 I consider different disciplinary, environmental, local and global perspectives to understand natural and human systems. 5 I examine the influence of power structures Cultural Diversity in society to understand inequalities among different groups. 6 I ask questions without making judgments about people from other cultures Personal and Social 7 I discuss the importance of ethics and moral Responsibility
method being influenced by learning method. According toHassan, an assessment should be “something that affects the students’ learning, confidence inthemselves and their skills,” where “the assessment method can enrich the learning method andthey are coupled together by an appropriate methodology of learning and assessment” [55, p.327].Riley and Lambrinidou’s Canons against CannonsRiley and Lambrinidou explored the addition of six principles to the values and principlescurrently expressed in engineering ethics canon, namely the ethical principles: ● Engineers’ primary goal is to help people in need and to address social problems ● Engineers challenge social injustice ● Engineers practice cultural and epistemic humility
findingsof both explicit sexism and racism as well as more systemic patterns in how identity shapesexperiences in engineering, perhaps especially in teamwork. This paper discusses the tool itself,our goals for its further development, and ethical questions we have encountered while workingto help design this teamwork support tool to detect and push back against systemic inequities inteamwork experiences.BackgroundTeamwork pedagogy is common in engineering courses, especially in first year (cornerstone) andsenior year (capstone) design courses, but also across the curriculum. Faculty have multiplegoals for teaching using teams, including improving students’ teamwork skills as a coreengineering competency as well as pedagogical goals like increased
technology to subdue the natural world in service to human needs and humanprogress [5]. In contrast, many Indigenous civilizations are more closely aligned with what hasbeen called the New Ecological Paradigm (NEP), which adopts a more holistic, interdependentview of these relationships oriented more toward an ethic of care for the natural world rather thanconquest [5]. These paradigm differences are especially important in the context of engineeringeducation because the DSP positions engineering and the technology it produces as a tool forsubduing nature in the service of humanity [8]. Individuals who hold more closely to the NEPmay thus find themselves further marginalized and alienated within the field because they hold afundamentally different
Engineering,University of Connecticut)sophia.fenn@uconn.edu 1 ASEE 2024Abstract: How does a Human Rights framework in engineering curriculum affectundergraduate students’ attitudes and opinions of sustainability and human rights? Deepeninginequality worldwide, aggravated by climate injustices and the effects of the COVID-19pandemic, has increased engineering scholars’ awareness of the necessity of developing a newengineering pedagogy and corresponding ethical framework to prepare an engineeringworkforce that can perform successfully and efficiently in multicultural and globalized settings.The University of Connecticut (UConn) has pioneered in developing a curriculum
given transparent The culture of the laboratory research expectations doing research is meaningful has strong morals and ethics 100 100 100 50 50 50 % % % 0 0 0 Overall ND NT Overall
movement that theorizes that thewell-being of individuals is best advanced by institutional freedom, deregulation, privatization,and competition [6], [7]. Neoliberalism champions free market exchange. It values competitionand self-interest as the ethics that should be used to guide all human actions [8]. Embracingneoliberalism, the focus of higher education has shifted from the pursuit of knowledge to theproduction of revenue.A culture of productivity has been previously characterized as the pervasive attitude thatengenders the result of labor as a commodity and values labor efficiency over an individual’sneeds, preferences, and well-being [9], [10]. The STEM academic culture of productivityprioritizes output, efficiency, and competition [11], [12
unfamiliar (N2 = 181), using the same test toevaluate differences in perceived ease of access and use of these services.Ethical considerationsWe have adhered strictly to ethical principles in our research, which aims to understand theinteraction between the university’s services and the socio-cognitive aspects of sense ofbelonging and self-efficacy.Before data collection, all participants were provided with an informed consent form thatclearly described the purpose of their participation. This form ensured that students were fullyaware of their rights to abstain from answering the survey without any consequences to theiracademic standing or university services. We have ensured that participation was completelyvoluntary, respecting the autonomy of
Paper ID #33189 soybean crop yields in Dr. Kristina Wagstrom’s Computational Atmospheric Chemistry and Exposure (CACE) laboratory. For the past two summers, Thomas has worked two internships: the first as an en- gineering intern at Allnex in 2019, and the second as an Environment, Health and Safety Intern at Pfizer in 2020. Working at Pfizer especially developed Thomas’s work ethic and passion for chemical engineer- ing, influencing him to seek further related chemical engineering positions after graduation where he can apply the knowledge he has learned in school to the pharmaceutical or manufacturing industries. Thomas is now seeking a full-time position with an engineering firm starting summer 2021 where he can
her teaching approaches, whether in lecture, work- shop, and laboratory settings. She has been actively involved in ethics, equity and leadership education in engineering since 2011.Jeffrey Harris, York University Dr. Jeffrey Harris is an assistant professor (teaching stream) in mechanical engineering at York University in Toronto, Canada. He currently serves at the Director of Common Engineering and Science within the Lassonde School of Engineering. He has a PhD in mechanical engineering from the University of Toronto and is completing a M.Ed. from York University.Aleksander Czekanski , CEEA-ACEG Dr. Aleksander Czekanski is an Associate Professor and NSERC Chair in Design Engineering in Las- sonde School of
environmental justice–namely whereengineers attend to their position as carrying out and reinforcing practices that create orexacerbate environmental racism but holding engineering as neutral.Recently, scholars published an editorial in the Journal of Engineering Education titled, “Theclimate is changing. Engineering Education needs to change as well” (Martin et al., 2022). Thescholars bring attention to the changing climate to emphasize four points (1) connect climate andsustainability to engineering design, (2) value cross-disciplinary perspectives, (3) “understandthe ethics and justice dimensions of engineering” and (4) “listen to and collaborate with diversecommunities.” (Martin et al., 2022, p. 740). In the third points, the authors discuss
research intern with the Center for Health Equity Trans- formation working on engineering design methods for building with those closest to health injustices, a science policy fellow with the Federation of American Scientists (FAS) outlining policies to mitigate bias in medical technology development, testing, and market deployment, and write about engineering, ethics, and social justice in outlets like Scientific American. ©American Society for Engineering Education, 2023 Community-Driven, Participatory Engineering Design to Shape Just, Liberatory Health FuturesAbstractEngineering education regularly overlooks people it is supposed to serve, especially thosehistorically and
highlight a small fraction of this new body ofwork, where students begin to engage in discussion of ARDEI concepts and ARDEI context istaught explicitly in engineering courses or is included in engineering problem solving.Some educators have begun adding context to show the connections between engineering andsociety to engineering examples, homework, and textbook problems that have traditionallyfocused on the technical aspects of engineering problem solving. Hirschfield and Mayes capturestudent interest in a chemical engineering kinetics course by using tangible examples of baking,antifreeze, and flame retardants, and asking students to reflect on the ethical considerationspresent in the design and use of these chemicals [14]. Riley’s
-year students in the Summer 2023 offering ofENSC 406 - Engineering Law and Ethics at SFU, which is one of the few mandatory fourth-yearcourses all students must complete as part of their degree requirements. Although the timing of thecourse offering was a pragmatic reason for starting with these students, they were also our desiredstarting point given their time and experience in an engineering program.The survey was formulated to ask questions that did not focus on program-specific issues such asduration of study, academic expectations, and course difficulty. The survey, comprising a total of 41close- and open-ended questions, covered a range topics inspired by current literature, such as identity[8] - [10] (e.g., “In what ways does your
students. 4. Demonstrating the values of diversity, equity, inclusion, social responsibility and ethical engineering practice more meaningfully in CoP activities, processes and documentation. This may include efforts to hold more social justice-focused events and activities of all students to participate in and to bring more diverse URM and women in as presenters as well as broader institutional efforts to change the culture of our engineering program at all levels so that dominant faculty and students are more aware. 5. Facilitating better mentorship connection opportunities with faculty, industry partners, and/or peers that include ways for underrepresented students to connect with diverse mentors who
significance of semantics: Person-first language: Why it matters,” Autistic Hoya, 2011.[8] L. Clouder, M. Karakus, A. Cinotti, M. V. Ferreyra, G. A. Fierros, and P. Rojo, “Neurodiversity in higher education: a narrative synthesis,” Higher Education, vol. 80, no. 4, pp. 757–778, Oct. 2020.[9] T. Armstrong, “The Myth of the Normal Brain: Embracing Neurodiversity,” AMA Journal f Ethics, vol. 17, no. 5, pp. 348–352, 2015.[10] J. den Houting, “Neurodiversity: An insider’s perspective,” Autism, vol. 23, no. 2, pp. 271–273, Feb. 2019.[11] N. Walker, Neuroqueer Heresies: Notes on the Neurodiversity Paradigm, Autistic Empowerment, and Postnormal Possibilities. Autonomous Press, 2021.[12] S. Beart, “‘I won’t think of meself as a learning