mathematicsco-requisite course to college algebra, in order to reach more students. We have alsoimplemented a mandatory peer mentor led workshop for all students. Peer mentors provide thestudents with an upper classman peer who can provide support inside and outside of theclassroom. In our paper we will continue to discuss specifics regarding the ENGR 100 course,peer mentoring, intervention strategies, and FYE components.Literature ReviewAccording to Kuh (2008)1 freshman year experience programs are highly influential inimproving student success and create positive impact on their pathway to a degree. Keycomponents of successful FYE programs are utilizing learning communities. In addition Kuh(2008) recommends writing intensive curriculums that focus on
with guidelines concerning theexpectations of their final presentation. Although the national Future City competition includesthe production of a physical model of the city, there was not adequate time to design, simulate,and construct a physical model in our competition so we instead relied on SimCity™ screenshotsand a narrative in a final written report.The design competition culminated with a presentation by each team in the Pecha Kucha style Page 26.1274.5(Figure 1). Presentations were exactly six slides presented in a 3-minute period (30 seconds perslide). Since teams were large, only a subset of team members presented. Teams were givenonly
McCormick.Therefore, McCormick created a different advising model for FirstYear students. The decision was made to move from a prescriptive model to a developmental model. Structure The advising model, as envisioned by the McCormick Administration can be broken into two major components: People and Technology. Each major component is broken down into smaller components. Figure 1 describes how the new model would support students during their first year. Figure 1 Proposed Student Support Network for FirstYear Students The two strongest influencers of students during the first year
Aeronautical University (ERAU),in Daytona Beach, FL has linked three fundamental engineering courses to provide students witha STEM (science, technology, engineering, and mathematics) small-learning-community (SLC).The same set of students is registered concurrently for the matching Physics I, Calculus I andProgramming for Engineers courses.Table 1 presents the topics taught in each of the STEM SLC courses. The STEM-SLC facultyfocused on creating mini-projects for their courses that would leverage the common topics, theseare the bold faced topics. For detailed results and an in depth-review of examples of thedeveloped mini-projects please refer to the previously published ASEE conference paper4. Table 1: Description of Calculus I, Physics I
Control Mass Rigid Boundary Ideal Gas Model Open System Pinned Joint Steam Tables Control Volume Linear Translation Friction Factor Closed System Rigid Body Newtonian Fluid Insulated Boundary Viscous Drag Lumped Element Figure 1 -- Common Concepts in Core Engineering Science Coursesfreshman engineering textbook. Saterbak, McIntire, and San9 have used this approach for an in-troductory
one of the orientation courses is required by all students in the CoE.Since the creation of these orientation courses, evaluations and student surveys have beenregularly assessed to continuously improve curriculum and better meet the needs of the differenttypes of incoming students.Undergraduate studies in both the United States and Canada have shown that students with peer-and near-peer mentoring supports are more heavily engaged in their academic curricula and aremore socially integrated into engineering-related programs than those students without mentors.1-6 Student evaluations in both the freshman and transfer sections at the University of Oklahomareflect that the mentorship techniques that are currently in place not only encourage