of this six week program for K-12 STEM teachers and pre-serviceteachers entitled Engineering Innovation and Design for STEM Teachers was to enhance theknowledge of teachers and pre-service teachers about engineering innovation and design so thatthey can facilitate inspirational engineering and innovation experiences in their classrooms aswell as better inform their students of potential career fields and societal needs related to STEM.During the first and second summers of this program, ten teachers and five pre-service teacherswere placed on teams with an engineering student, engineering faculty and an industrial mentoror community partner. Each team participated in an introductory engineering innovation anddesign project as well as a more
; Pre-Calculus Physics Composition II Senior Year Capstone Project HIGHER EDUCATION Language & Leadership History I Communication I Engineering Mathematics, Engineering Science, Language & Human History II
; comparisons of results from thesurveys, the beginning of the 9th grade and at the end of each semester thereafter; and resultsfrom surveys of 12th grade students (survey, PSAT and/or ACT career interest). In addition,qualitative measurements will include the random sample work of student portfolio, and theirselection of a topic for their 11th grade capstone project as an indicator of increased interest inSTEM learning and careers.Baseline quantitative measurements data will be collected each year for the 9th grade class thathas no exposure to the ICE-HS framework. The quantitative data will be tested using two samplet test to indicate a statistically significant difference in the population.By the end of Phase 1 we will have the end of course grades
AC 2012-4304: INSPIRING INTEREST IN STEM THROUGH SUMMERROBOTICS CAMPProf. Richard S. Stansbury, Embry-Riddle Aeronautical University, Daytona Beach Richard S. Stansbury is an Associate Professor computer engineering and computer science in the Depart- ment of Electrical, Computer, Software, and Systems Engineering at Embry-Riddle Aeronautical Univer- sity, Daytona Beach, Fla. He teaches courses in artificial intelligence, data structures and algorithms, and the capstone senior design course. His research interests include unmanned aircraft, mobile robotics, and applied artificial intelligence.Prof. Farahzad Behi, Embry-Riddle Aeronautical University
production), Management and Entrepreneurship Skills,and career pathways. The Electronics Vocational Framework requires a detailed analysis intoanalog and digital circuitry. Several courses rely on the Drafting Vocational Framework,focusing on computer aided design (Autodesk Inventor, AutoCAD), analyzing blueprints,dimensioning, and creating 2 and 3 dimensional models.In the senior year capstone course, one of the major objectives is to integrate advancedmathematics and science into the engineering and technology education. The governingvocational document for this course requires a large number of embedded academic (i.e. mathand science) skills within the vocational standards. In order to accomplish this, the classcompletes a project analyzing
development, this research project will have implications forhigh school curriculum development, learning, and teaching methodologies.Design problems in these previous studies are ill-structured and open-ended. These kinds ofproblems have many potential solution paths stemming from an ambiguous identification of aneed. The Carnegie Foundation for the Advancement of Teaching has prepared a series ofstudies including a focus on educating engineers 14. Sheppard’s research identified reflectivejudgment as an appropriate framework for understanding the cognitive development of designthinking. “As individuals develop mature reflective judgment, their epistemological assumptionsand their ability to evaluate knowledge claims and evidence and to justify their
provide a working knowledge of nanotechnology in generaland the physics and chemistry employed in nanofiber production specifically.Additionally several modes of assessment were used through out the activity. Inparticular, an attitudes inventory was administered pre and post activity to evaluatechange in perceptions about pursuing STEM careers. Summative assessments were usedto gage student’s learning and performance based assessments were used to enhancestudent’s internalization of the subject matter. The students demonstrated an improvedunderstanding of nanotechnology across the board and girls performed better than theboys on the summative assessment. As a capstone on the project the students producedposters to communicate their findings to
University of Cincinnati Evaluation Sevices Center and the Arlitt Child & Family Research & Education Center. She has a BS in Chemical Engineering and an EdD in Educational Studies with a concentration in the cognitive and social aspects of instructional practices. Dr. Maltbie has evaluated STEM educational projects and programs since 2000.Ms. Julie Steimle, University of Cincinnati Julie Steimle is the Project Director for the Cincinnati Engineering Enhanced Math and Science Pro- gram (CEEMS). Prior to that, she ran an outreach tutoring program for K-12 students at the University of Cincinnati. Before joining UC, Ms. Steimle served as the Director of Development and Children’s Services at the Literacy Network of
a project that investigates the use of engineering as a context in which to learnmathematics through an evaluation of a LEGO-based robotics curriculum. We performed acontent analysis of the curriculum in order to identify the types of mathematics topics thatstudents would have an opportunity to learn, and investigated the extent to which those topicswere aligned with national mathematics standards. The curriculum had a large percentage oftasks with clear relevance for mathematics and aligned well with the standards at the level ofbroad, topic areas (e.g., measurement, algebra, etc.). The curriculum was not well aligned at themore specific, topic level (e.g., use of measuring instruments, evaluating expressions, etc.),indicating that level
, Northeastern University; and 1981-1989 Associate Director for Finance and Administration, Center for Electromagnetics Research (CER), Northeastern University. Pub- lications/Papers: Reenergizing and Reengaging Students Interest through CAPSULE; A Novel and Evolu- tionary Method on Educating Teachers to Promote STEM Careers Jessica Chin, Abe Zeid, Claire Duggan, Sagar Kamarthi (IEEE ISEC 2011); and ”Implementing the Capstone Experience Concept for Teacher Professional Development” Jessica Chin, Abe Zeid, Claire Duggan, Sagar Kamarthi (ASEE 2011). Rel- evant Presentations: ”K-12 Partnerships” (Department of Homeland Security/Centers of Excellence An- nual Meeting 2009); ”Building and Sustaining K-12 Educational Partnerships
of the program by the doctoral Fellows participating in the NSFGraduate K-12 Fellows STEP (Science and Technology Expansion Project)grant in which the students and their parents were given a set of materials tobe used to design and build a tower that need to be a minimum of 5 or moreinches tall with a platform to hold a paper cup. Thus this project served asthe capstone experience. A fixed time limit for designing and constructingwas specified. The objective was to see which tower could hold the mostpennies. Figure 2 shows a Fellow testing one of the towers. The judgingparameters used by the STEP Fellows were: correct height of the tower, Figure 2. STEP Fellow
Education & Educational Technology at Purdue University. After study- ing philosophy, religious studies and information science at three universities in Germany, he received his M.Ed. and Ph.D. (2004) in Learning Technologies from the University of Missouri-Columbia, USA. NSF, SSHRC, FQRSC, and several private foundations fund his research. His research and teaching focuses on the intersection between learning, engineering, the social sciences, and technology, particularly sus- tainability, designing open-ended problem/project-based learning environments, social computing/gaming applications for education, and problem solving in ill-structured/complex domains
AC 2012-3769: ENGINEERING AS A CAREER CHOICE AMONG RU-RAL APPALACHIAN STUDENTSMr. Matthew Boynton P.E., Virginia Tech Matthew Boynton is a doctoral student in the Engineering Education Department at Virginia Tech. Before entering Virginia Tech, he earned a B.S. and M.S. in civil and environmental engineering, and an Ed.S in instructional leadership from Tennessee Technological University. His engineering work experience includes work within a rural telecommunications service provider and an environmental consulting firm. While working toward his M.S. and Ed.S, Boynton worked with the Extended Education Department at Tennessee Technological University teaching Project Lead the Way engineering courses in rural high
under NYU-Poly’s GK-12 program funded by NSF and CBRI consortium of donors. His research interests include real-time monitoring DNA-protein interactions at electrified interfaces.Vikram Kapila, Polytechnic Institute of New York University VIKRAM KAPILA is an Associate Professor of Mechanical Engineering at Polytechnic Institute of NYU, Brooklyn, NY, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Re- mote Laboratory, an NSF funded Research Experience for Teachers Site in Mechatronics, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests are in cooperative control; distributed spacecraft formation
AC 2012-4849: HIGH SCHOOL STUDENT ENGINEERING DESIGN THINK-ING AND PERFORMANCEProf. Kurt Henry Becker, Utah State University Kurt Becker, Ph.D., is a professor and the Department Head of Engineering and Technology Education. He is the Co-principal Investigator for the National Science Foundation (NSF)-funded National Center for Engineering and Technology Education (NCETE). His areas of research include adult learning cognition, engineering education professional development, and technical training. He has extensive international experience working on technical training projects funded by the Asian Development Bank, World Bank, and U.S. Department of Labor, USAID. Countries where he has worked include Bangladesh
object, such as a hair dryer, and predict the internal mechanisms of the machine. 3. Robotics Design Challenge: Design and build a robot to detect objects and transport them to a goal area. 4. Final Design Challenge: Develop and collaborate on a design project in groups (similar to a capstone design experience). Page 22.1612.3Using a within-subjects pre-post design, we tested the following hypotheses: 1. Does DBI improve teachers’ innovation and efficiency in engineering? 2. Does DBI increase teachers’ adaptive beliefs about engineering and learning?ExpertiseWhile research shows that content specificity is important to expertise
(e.g., control of dynamicsystems, mass transfer). In this logic, students spend the majority of their time learning a longsequence of engineering “fundamentals” before they are deemed competent to engage in creativedesign problem solving in their final-year capstone projects.3 This approach is understood as“exclusionary” not in the sense of being elitist but in the more general sense of seeking to keepout that which does not belong, including those persons (or those facets of persons) not in linewith the dominant decontextualized, narrowly technical-analytic way of problem solving withinengineering. Lectures and focused problem sets remain the mainstay educational modalitieswithin university engineering education, even as wide-ranging
that is aligned withresearch-based educational practices was used to evaluate the instructional quality of the module.Project DesignThe project provided targeted professional development and a research experience for twocohorts of secondary math and science teachers from the GCS Central Region. Project activities Page 25.936.3included innovative strategies to strengthen educator skills in teaching hands-on NASA-relatedSTEM content. Teachers engaged in Earth System Science research under the mentorship ofexperienced STEM and education graduate students and designed innovative inquiry-based EarthScience teaching modules that are aligned with
Institute of Technology Chris Jurado is involved in the development of research activities such as collection and analysis of data and publications as part of the National Science Foundation’s Science Partnerships Program as well as in the implementation of capstone projects at the Center for Innovation in Engineering and Science Educa- tion (CIESE). Prior to joining CIESE he was a practicing chemical engineer on water treatments, envi- ronmental management systems and quality assurance. Chris received a BE in in Chemical Engineering from University of Guayaquil, an Environmental Technology Certificate from the Swedish International Development Agency, and a ME in Engineering Management from Stevens Institute of
standards involved in designing engineering curricula. He is currently conducting research on an NSF project led by Dr. Stephen Krause, focused on the factors that promote persistence and success for undergraduate engineering students.Dr. Eugene Judson, Arizona State University Eugene Judson is an Associate Professor of for the Mary Lou Fulton Teachers College at Arizona State University. His past experiences include having been a middle school science teacher, Director of Aca- demic and Instructional Support for the Arizona Department of Education, a research scientist for the Cen- ter for Research on Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His
scanners and other mobile devices in Holtsville, N.Y. His largely experimental research is focused on parametric studies of novel lightweight composites and simulations of functionally-graded materials under load.Vikram Kapila, Polytechnic Institute of New York University VIKRAM KAPILA is an Associate Professor of Mechanical Engineering at Polytechnic Institute of NYU, Brooklyn, NY, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Re- mote Laboratory, an NSF funded Research Experience for Teachers Site in Mechatronics, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests are in cooperative control
resources, and determining how to solve thechallenges of setting up a secure and viable network. The capstone event for students whoparticipated in the IT club is a two-day cyber defense competition (CDC) on the Iowa StateUniversity campus. During the remote setup, the high school students were able to log into achat room and ask for guidance or clarification from college students supporting the equipmenton campus. These chat conversations were logged and this paper utilizes content analysis toquantitatively analyze the chat conversations in terms of the students progressing throughBloom’s taxonomy. The results demonstrated that students were in the Applying, Analyzing andEvaluating stages of learning, showing that the students did perform active
polymers and semiconductors. He has co-developed a Materials Concept Inventory for assessing fundamental knowledge of students in introductory materials engineering classes. Most recently, he has been working on Project Pathways, an NSF supported Math Science Partnership, in developing modules for a courses on Connecting Mathematics with Physics and Chemistry and also a course on Engineering Capstone DesignChell Roberts, Arizona State University Chell A. Roberts is an associate professor of industrial engineering. He received his Ph.D. in Industrial Engineering and Operations Research from Virginia Tech in 1991. He has a MS in Industrial Engineering and a BA in Mathematics from the University
., performing mechanical testing and evaluation of scanners and other mobile devices in Holtsville, N.Y. His largely experimental research is focused on parametric studies of novel lightweight composites and simulations of functionally graded materials under load.Dr. Vikram Kapila, Polytechnic Institute of New York University Vikram Kapila is a professor of mechanical engineering at NYU-Poly, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF funded Research Experi- ence for Teachers Site in Mechatronics, and an NSF-funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, Ohio. His research interests are in cooper
AC 2012-5480: USING ROBOTICS TO PROMOTE LEARNING IN ELE-MENTARY GRADESMr. Akim Faisal, Polytechnic Institute of New York University Akim Faisal is currently pursuing a master’s of science in mechanical engineering.Dr. Vikram Kapila, Polytechnic Institute of New York University Vikram Kapila is a professor of mechanical engineering at NYU-Poly, where he directs an NSF-funded Web-enabled Mechatronics and Process Control Remote Laboratory, an NSF-funded Research Experi- ence for Teachers Site in Mechatronics, and an NSF funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, Ohio. His research interests are in cooper- ative control, distributed spacecraft
invent effective strategies and representations for solving math problems, and these methods can serve as bridges for instruction. He is also exploring the embodied nature of students’ knowledge, as exhibited by gestures, and the mediating effects of action on conceptual knowledge. His studies of teachers' beliefs about the development of students' mathematical reasoning showed that content experts can show evidence of expert blind spot, which influences teachers’ expectations of what makes things difficult for their students. He is currently co-principal investigator for the AWAKEN Project (funded by NSF-EEP), which examines the nature of high school pre-engineering
students build the instruments at the end of the semesterand prepare for a day out with the SeaPerch ROVs. The success of the outreach competition has beenoverwhelming and the experience our undergraduates have received has been invaluable to their success intheir senior capstone projects as well as in their job searches. Although we are just ending our second year of the implementation (this year we taught anadditional 250 students), we had over 450 students from 15 schools use some of the ROV curriculum wedeveloped to learn about STEM, and then design and build ROVs, and later use those ROVs in the secondUtah ROV Competition. Local media and STEM companies, in addition to the students, parents, teachers
practices and intersections of motivation and learning strategiesDr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work
to favor some parts of their brain more than other parts in learning.Indeed, Kolb has devised a learning-styles inventory (LSI), which can determine the test-taker’spreferred learning style.1,23 Theoretically, this preference reflects something about the way inwhich a student would like to learn, but does not limit learning to only one part of the cycle.With this information in hand, it may be possible to determine why some students get excited byand excel at certain aspects of a project, whereas other aspects of the same project seem boringor too difficult. Since effective learning requires the whole brain,18 one goal of InnoWorks is tohelp students develop those parts of the learning cycle that they are less inclined to use.It can be a