Paper ID #43601Left on their Own: Confronting Absences of AI Ethics Training among EngineeringMaster’s StudentsElana Goldenkoff, University of MichiganDr. Erin A. Cech, University of Michigan ©American Society for Engineering Education, 2024Left on their Own: Confronting Absences of AI Ethics Training amongEngineering Master’s StudentsAbstractAlthough development of Artificial Intelligence (AI) technologies has been underway fordecades, the acceleration of AI capabilities and rapid expansion of user access in the past fewyears has elicited public excitement as well as alarm. Leaders in government and academia, aswell as members of the
Paper ID #43681Frankenstein Lives! Teaching Mary Shelley’s Novel in the Engineering ClassroomDr. Benjamin J. Laugelli, University of Virginia Dr. Laugelli is an Assistant Professor of Engineering and Society at the University of Virginia. He teaches courses that consider social and ethical aspects of technology and engineering practice. ©American Society for Engineering Education, 2024 Frankenstein Lives! Teaching Mary Shelley’s Novel in the Engineering ClassroomIntroductionMary Shelley’s novel Frankenstein, widely regarded as the first work of modern science-fiction
emergencetheory. The goal of this section is to guide and ground our systematized literature review withinthe broader context.A Primer on Interdisciplinary Perspectives to Micro-Meso-Macro Perspectives (Levels)To understand Micro-thriving, Meso-thriving, and Macro-thriving, it is important to firstacknowledge the distinctions between the terms “Micro,” “Meso,” and “Macro”, and therelationships among these terms. The distinctions between Micro, Meso, and Macro have beenwidely acknowledged in engineering ethics and related fields such as economics, sociology, andpsychology, as they provide a framework for analyzing ethical considerations at varying levels ofscale and influence within complex systems [12], [13], [14]. The Micro-Level pertains toindividuals
justice and vocational psychologies and in recent years has examined the social cognitive factors that explain social justice and engineering engagement. ©American Society for Engineering Education, 2024 Do Social Justice Case Studies Affect Engineering Professional Responsibility?IntroductionEngineers solve complex problems that incorporate specific constraints, including cost, time,federal regulation, racial and economic disparities, and political power. As we train ourundergraduate students to solve these problems, it is required by ABET Student Outcome (4) thatwe provide them with “an ability to recognize ethical and professional responsibilities inengineering
Paper ID #41641Engineering Identity Development Among International Students in UK FoundationYearDr. Madeline Polmear, King’s College London Madeline Polmear is a lecturer (assistant professor) in engineering education at King’s College London. Her research interests relate to engineering ethics education and the development of societal responsibility and professional competence through formal and informal learning. Madeline received her Bachelor’s in environmental engineering, Master’s in civil engineering, and PhD in civil engineering at the University of Colorado Boulder, USA. Prior to joining KCL, she was a Marie
Paper ID #43129Design Iterations as Material Culture Artifacts: A Qualitative Methodologyfor Design Education ResearchDr. Grant Fore, Indiana University-Purdue University Indianapolis Grant A. Fore, Ph.D. is the Assistant Director of Research and Evaluation in the STEM Education Innovation and Research Institute at IUPUI. As a trained anthropologist, he possesses expertise in qualitative methods and ethnographic writing. His primary research interest is in the teaching and learning of ethics in higher education through community-engaged and place-based pedagogies. ©American Society for
Paper ID #42803Countering Passive Engagement: STS Postures and Analyzing Student Agencyin Everyday EngineeringDr. David Tomblin, University of Maryland, College Park David is the director of the Science, Technology and Society program at the University of Maryland, College Park. He works with STEM majors on the ethical and social dimensions of science and technology.Dr. Nicole Farkas Mogul, University of Maryland, College Park Nicole Mogul is a professor of engineering ethics and Science, Technology and Society at the University of Maryland, College Park.Christin J. Salley, University of Michigan
in Engineering Education from Purdue University.Chrystal S JohnsonSiddika Selcen Guzey, Purdue University ©American Society for Engineering Education, 2024 Project DECIDE: A K12 Civics and Engineering Education Curricular Partnership (Works in Progress)IntroductionMany have expressed concern about ethics and civic-mindedness of engineers and theirreflection on their responsibility and public impact of their work[1]. Universities hope tograduate ethical engineers, but may not have intentionality about the education towards civicresponsibility. Lin and Hess[2] argued that civic responsibility requires special attention inengineering education. Hess and Zola[3] found that few youth
category of engineering as conflict in courses we teach. Our backgroundsin different scholarly traditions inform the ways in which we approach engineering education,which we find are often in conflict, leading to a productive tension which we hope to unpack inthis piece.Jenna Tonn: I am a historian of science and technology and I co-designed and co-teach Makingthe Modern World: Design, Ethics, and Engineering (MMW) with an industrial systemsengineer. MMW is a 6-credit course for first-year students that integrates the modern history oftechnology and engineering as it relates to equity and justice with an introduction to engineeringfundamentals and engineering design. MMW fulfills a number of requirements for engineers andnon-engineers. For all
student, she focuses on the intersection of Responsible AI, public narratives, policy, and ethics. Her research interests revolve around public trust in AI systems, technology co-design practices with end-users and interdisciplinary approaches to AI literacy. Critical and feminist approaches to science and technology studies inspire her investigative stance. Leslie holds certifications in AI Ethics (LSE), Responsible AI and Human Rights (University of Montreal-MILA), and AI Policy (CADIP). As a consultant for a Global Partnership in AI project, Leslie contributed to research on equality and inclusion within the AI ecosystem. As an educator, she is interested in encouraging critical conversations on technology and
respond to the complex ethical, social, political, andenvironmental challenges of today, they may begin to eschew traditional case studies that portrayengineering as objective and apolitical. In this way, they may begin to “transgress” againstdominant views of engineering that can limit students’ critical thinking and engagement withsocio-political issues within engineering contexts. Liberatory pedagogy also disrupts the statusquo of power dynamics and practices in the postsecondary classroom, opening up space for newclassroom activities and assessments that create a more collaborative and equitable learningenvironment [1].In this paper, I explore the redesign of an undergraduate engineering technology and societycourse in relation to the idea of
the University of Toronto. Her research interests include engineering culture, engineering careers in the public sector, and ethics and equity in STEM. Dimpho has several years of experience in thDr. Emily Moore P.Eng., University of Toronto Emily Moore is the Director of the Troost Institute for Leadership Education in Engineering (Troost ILead) at the University of Toronto. Emily spent 20 years as a professional engineer, first as an R&D engineer in a Fortune 500 company, and then leadingDr. Andrea Chan, University of Toronto Andrea Chan is a Senior Research Associate at the Troost Institute for Leadership Education in Engineering | University of TorontoMs. Emily Macdonald-Roach, University of Toronto
complex, technical information. 3) Revise documents for content, organization, and writing style. 4) Using library research skills and knowledge of citation practices, conduct self-directed inquiry to identify, critically evaluate, and cite relevant literature. 5) Provide feedback to others on their writing, speaking, and teamwork abilities. 6) Demonstrate ability to work in teams and manage team projects. 7) Design and deliver effective oral presentations. 8) Understand ethics and sustainability in engineering.The students completed four major assignments where they used our scaffolded approach torevision: Job Documents, Research Poster, Lab Protocol, and Technical Report. (Detaileddescriptions of all major assignments are
., 2022Challenges with Intervention Throughout the articles, authors discussed seven main challenges when integratingequitable design concepts into their workshops, courses, or programs: (1) curriculum integration,(2) faculty development, (3) assessment and evaluation, (4) student engagement and motivation,(5) prior experience, (6) long-term impact, and (7) addressing societal challenges (Table 4).During curriculum integration, faculty encountered challenges incorporating new,interdisciplinary concepts into their existing curricula, namely topics on ethics, social justice,accessibility, and sustainability (Forbes et al., 2022; Hoople et al., 2020; Letaw et al., 2022;Motti & Dura, 2021; Rossmann et al., 2020). Engineering education has continued
Student Outcomes requirement(elaborated below). As a strong STEM-focused institution, Mines has a long history ofmaintaining high standards surrounding technical engineering coursework, which all DE studentsmust satisfy along with students in traditional disciplinary engineering programs. Alongside thetraditional technical engineering coursework offered by the disciplinary engineering programs,the Design Engineering program weaves our design-spine, providing an avenue for exploring thecontext of engineering design applications, with a strong focus on user experience and social,ethical, and environmental responsibility. Our program has evolved to a place where the designcoursework brings about critical transformations through a deep commitment to
personal insights, emotions, and experiences through poetry writing. 5. Fostering Interdisciplinary Connections: Explore the intersection of engineering and other disciplines, such as literature and art, to foster interdisciplinary thinking and broaden students' perspectives on their field of study. 6. Stimulating Critical Thinking: Challenge students to analyze and interpret poetry written by others, including poems related to engineering themes, to develop critical thinking skills and appreciate diverse perspectives. 7. Promoting Empathy and Ethical Awareness: Encourage students to consider the societal, environmental, and ethical implications of engineering projects through poetry that explores
the FTX collapse as a case study through which students can deliberate onthese issues.IntroductionWhen I started following the rapid collapse of the FTX cryptocurrency exchange in November2022, I was already considering the possibility of a case study for my engineering students.Students at my institution (and, I suspect, elsewhere) had been enthusiastic about investments incryptocurrency, even forming an official school club. I thought that studying a spectacular failurein crypto might leverage students’ interests in the manner of other case studies in engineeringethics and communication, such as the Challenger and Columbia space shuttle tragedies. I oftendevelop lessons out of such news stories when they lead with an obvious ethical lapse
, invokes a context inwhich “societal actors and innovators become mutually responsive to each other with a view onthe (ethical) acceptability, sustainability, and societal desirability of the innovation process andits marketable products” (Von Schomberg quoted by Schwartz-Plaschg, p. 149). In other words,the language of RRI assumes a very different kind of relationship between actors than does thelanguage of regulation. An awareness of the power of analogies can heighten our sensibilitiesregarding the linguistic choices we habitually make.Where analogical imagination refers to the context evoked by a particular choice of words,analogical reasoning is a form of critical thinking in which we make an implicit comparisonexplicit and explore how the
Paper ID #42156The Power of Place: A Critical Examination of Engineering Enculturation &Identity FormationDr. Timothy Duane Reedy, University of Maryland, College ParkDr. David Tomblin, University of Maryland, College Park David is the director of the Science, Technology and Society program at the University of Maryland, College Park. He works with STEM majors on the ethical and social dimensions of science and technology. ©American Society for Engineering Education, 2024 The Power of Place: A Critical Examination of Engineering Enculturation and Identity FormationAbstract
contexts from both literature and practice, the word stewardshiprefers to the generational knowledge of taking care of the land and community. Thisknowledge is expressed through practical skills such as hunting, trapping, and gathering, andthrough the values of responsibility and reciprocity. Stewardship in this context means to giveback to nature all that nature gives to us and to take only what we need [29].H. R. Anderson, one of the founding directors of the Native American TheologicalAssociation, noted that the communities he engaged with had an ethic of generosity thatdiffered from the dominant culture. In the dominant culture, the status in community wasacquired by having; in Indigenous communities, status was acquired by giving and sharing
crucialmechanism by which U.S. engineering education settings have grappled with unwanted politicalsensibilities is through silencing. There is an enduring sense that rigorous, respectableengineering training, as well as engineering in action, from the technical classroom, at the labbench, or on the factory floor must exclude the subjectivities we know as “politics.” This isdespite the concession by some that value systems known as “ethics” or “rigor” may (must) bebolstered [26], [27]. Across many technical subdisciplines, so-named ethics and other liabilitysystems are today seen to represent the universe of Engineers’ moral responsibilities in itsentirety. We are prompted to ask, then: How precisely does such apparent depoliticization ofEngineering
pm. The data collection and analysis for this research was consideredexempt by the school’s institutional review board, and all necessary protocols were followed forstudent data protections.Theoretical Framework: This activity is inspired by Nel Nodding’s theory of Ethics of Carewhere it is suggested that caring is a universal human attribute and caring is ethically basic tohumans [14]. This theory supports the message that educators are responsible for caring for theirstudents and believing in their success outside of the classroom [15]. The theory can beextended to say that the goal of an engineering educator is to ensure that engineering students areable to leave the degree program as not only successful engineers but also as successful
followed human subjects research ethics guidance from theuniversity at which the interviews were conducted and the authors’ university.ContextSeveral contextual factors undoubtedly shaped the interviews that were analyzed for this paper.First, a COVID-19 resurgence drove many campus activities back to the virtual realm. Second,Canada’s Indigenous people were frequently in the news. The nation’s Truth and ReconciliationCommission ,which was formed as a result of growing awareness the horrific situation withResidential Schools, was frequently in the news [25]. Canada recognized Sep. 30 as the NationalDay for Truth and Reconciliation with a number of educational and recognition activities.Perhaps related to all of the news and events, it is not
the Social Responsibility Attitudes of Engineering Students Over Time,” Sci Eng Ethics, vol. 22, no. 5, pp. 1535–1551, Oct. 2016, doi: 10.1007/s11948-015-9706-5.[13] J. Huff, B. K. Jesiek, C. B. Zoltowski, K. D. Ramane, and W. C. Oakes, “Social and Technical Dimensions of Engineering Identity,” presented at the 2016 ASEE Annual Conference & Exposition, Jun. 2016. Accessed: Jan. 18, 2024. [Online]. Available: https://peer.asee.org/social-and-technical-dimensions-of- engineering-identity[14] M. H. Hwang, E. Trueblood, and S. A. Claussen, “Engineering Identity, Perceptions of Sociotechnical Education, and Views of Engineering Practice in Undergraduate Students,” in 2022 IEEE Frontiers in Education
Paper ID #43452Extraordinary Engineering Impacts on Society: Over Seven Decades of Contributionsfrom the National Science Foundation: A U.S. National Academy of EngineeringStudyMs. Casey Gibson, National Academy of Engineering Casey Gibson, M.S., is an Associate Program Officer at the National Academy of Engineering (NAE) of the U.S. National Academies of Science, Engineering, and Medicine where she contributes to the Cultural, Ethical, Social, and Environmental Responsibility in Engineering (CESER) program. Gibson holds an M.S. from the Colorado School of Mines in Humanitarian Engineering and Science with a specialization
knowing are valid, and whoseapproach to communication can be valued” (p.20). The predicament and challenge ofcommunication across difference also presents opportunities and ethical imperatives, contendscholars working on social justice in technical communication [22], [23]. These scholars, amongmany others, highlight a social justice imperative and work to foreground the influence ofidentity and culture on technical communication.Problems of access, representation, and equity are not unique to STEM contexts. Social justiceresearch takes up the problem of injustice and discrimination in TPC research and workplaces,illuminating both problems of inequity and possibilities for change [20]. Issues of power,privilege, and positionality circulate
Purdue University. His current research interests focus on engineering ethics, the connections between personal morals and professional ethics, and how students ethically develop as engineers. He earned a B.S. in Chemical and Biochemical Engineering at the Colorado School of Mines (Golden, CO) in 2020.Polly Parkinson, Utah State UniversityFawn Groves, Utah State UniversityDr. Angela Minichiello, Utah State University Angela (Angie) Minichiello is a military veteran, licensed mechanical engineer, and associate professor in the Department of Engineering Education at Utah State University. Her research examines issues of access, equity, and identity in the formation of engineers and a diverse, transdisciplinary 21st century
of mentors and advisors from nonprofit organizations also participated in curricularactivities, but the nonprofit partners were not involved in course instruction, and theirinvolvement in ongoing curricular design and programming was mostly limited to mentoringactivities that focused on exposing students to nonprofit models. Finally, the instructional staffwas supplemented by buy-outs of faculty with expertise in communication, humanities,engineering, ethics, and data analytics.Integral to the curricular organization of this academic plan were collaborative, cross-disciplinary projects where students were introduced to “real world problems” that they workedon in small groups or teams. Outside of this studio course, students were also
Education Has Failed’: Reading like an Engineer in 1960s America,” Technol. Cult., vol. 50, no. 4, pp. 753–782, 2009.[6] A. G. Christie, “A Proposed Code of Ethics for All Engineers,” Am. Acad. Polit. Soc. Sci., vol. 101, no. 1, pp. 97–104, 1922.[7] R. Kline, “Construing ‘technology’ as ‘applied science’: Public rhetoric of scientists and engineers in the United States, 1880-1945,” Isis, vol. 86
that is a problem.I believe engineers are smart enough to see climate change and be proactive without being forcedinto through course work.”. Four more students believed even though it wasn’t covered in class,that isn’t an issue, as the responsibility of climate change shouldn’t fall on engineering students,but rather on big companies or government.The remaining students who said no, said that climate change is either brushed over, not broughtup at all, or that coverage is not sufficient. One recurring theme is the lack of substantiality indesign courses. For example, “Especially in introductory design classes, the importance ofdesign for the environment is lost. Ethics already has some sustainability components, but thesefailed to strongly