- Conference Session
- Project-Based and Experiential Learning in Manufacturing
- Collection
- 2023 ASEE Annual Conference & Exposition
- Authors
-
Yalcin Ertekin, Drexel University
- Tagged Topics
-
Diversity
- Tagged Divisions
-
Manufacturing Division (MFG)
solutions to real-life/simulatedproblems using a project-based approach.1.1 IntroductionAs our courses geared towards incorporating new technological trends in supply chain management andsustainability, the capstone senior design project topics in this area also increased. The main aspectspresented are related to the integrative approach in green energy harvesting, manufacturing, andsustainability, serving as models of energy efficiency and sustainable supply chain management, with aclear assessment of student-led projects developed during past academic years and how they contributeddirectly to the development of leadership skills along with untamed creativity. These capstone projects,along with clear connections between projects and curriculum
- Conference Session
- Project-Based and Experiential Learning in Manufacturing
- Collection
- 2024 ASEE Annual Conference & Exposition
- Authors
-
Akbar M. Eslami, Elizabeth City State University; Kuldeep S Rawat, Elizabeth City State University; Chandra Bhushan Asthana P.E., Elizabeth City State University; Scott Bradshaw, Elizabeth City State University
- Tagged Topics
-
Diversity
- Tagged Divisions
-
Manufacturing Division (MFG)
Bridge and Internship ProgramsAbstractUndergraduate students need exposure, initiation, motivation, and guidance to develop anorientation toward research that will benefit them not only in their capstone projects but also intheir future careers. Elizabeth City State University (ECSU) made such an opportunity availableto the rising junior and senior students of the Engineering Technology program.Fifteen rising junior students were selected to participate in the summer bridge program, and fourrising junior and senior students were selected to participate in a summer internship program atthe Coast Guard's aircraft facility. The project's scope was to engage students in designing,prototyping, and fabricating Unmanned Aircraft Vehicles (UAVs) and
- Conference Session
- Virtual and Augmented Reality Application in Manufacturing Education
- Collection
- 2024 ASEE Annual Conference & Exposition
- Authors
-
Richard Chiou, Drexel University; Isher Singh; Arjuna Karthikeyan Senthilvel Kavitha, Drexel University; Tzu-liang Bill Tseng, University of Texas at El Paso; Md Fashiar Rahman, University of Texas at El Paso; Nijanthan Vasudevan, Drexel University
- Tagged Topics
-
Diversity
- Tagged Divisions
-
Manufacturing Division (MFG)
, providingstudents with a unique platform alongside traditional laboratory work. Through this approach,students not only gain insights into wind energy concepts but also acquire 3D modeling skills,learn the basics of virtual reality, and develop programming proficiency. The virtualimplementation of wind turbine setups facilitates better understanding and visualization, andstudents also acquire essential skills such as SolidWorks designing, understanding thesignificance of virtual reality, working with UNITY 3D, programming, and creating simulationsand interactive platforms. These hands-on, interdisciplinary efforts serve as both laboratoryexercises and capstone projects, enabling students to integrate and apply their STEM skills andknowledge acquired from
- Conference Session
- Manufacturing Workforce Development
- Collection
- 2023 ASEE Annual Conference & Exposition
- Authors
-
Firas Akasheh, Tuskegee University; Stephen Baker; Mandoye Ndoye, Tuskegee University; David Shannon, Auburn University; josiah e blocus, Tuskegee University; Eugene Thompson
- Tagged Topics
-
Diversity
- Tagged Divisions
-
Manufacturing Division (MFG)
in improved understanding and exposure to real-life product development practices. Furthermore, AM can unlock the creativity of students byenabling them to produce innovative parts with almost no restrictions on part geometricalcomplexity. Building on students’ interest in drones, Tipker et al. [3] presented freshmanengineering class basic drone electronics kit and asked them to design and build, using AM,suitable drone structure, assemble it, and fly it. In a senior capstone project, Hur et al. [4]demonstrated how students used AM to manufacture metal and plastic propellers for small-scalethrusters for underwater robots. Rios [5], 3D-printed and compared them to their CAD models toillustrate several geometric dimensioning and tolerancing