, andInclusivity in STEM Education at Cal Poly,” PLC sought to: 1. identify explanations for patterns of underrepresentation that exist within the research and best practices literature; 2. assess how Cal Poly’s student recruitment (admission and yield), retention, and graduation demographics compare to those at other institutions and the nation (with a focus on discipline-by-discipline comparisons); 3. employ the research and best practices literature as a lens to a) initiate analysis of Cal Poly at the course, major, department, college, and university levels and b) identify research questions and areas of uncertainty; 4. build and strengthen new and existing faculty
an ecosys- tem of training and support for students and to develop innovative teaching practices focused on team- and project-based learning.Dr. Ken Yasuhara, University of Washington Ken Yasuhara (he/him) is the director of the Office for the Advancement of Engineering Teaching & Learning at the UW and serves the College of Engineering as its instructional consultant. Dr. Yasuhara began working as an instructional consultant in late 2015, after several years of experience as an engi- neering education researcher at UW’s Center for Engineering Learning & Teaching.Dr. Per G. Reinhall, University of Washington Per Reinhall (he/him) is a professor and recent chair of the Mechanical Engineering Department at
Paper ID #42624Oral Examinations in Environmental Engineering Design CoursesProf. James N. Jensen, University at Buffalo James N. Jensen is professor and chair of the Department of Engineering Education at the University at Buffalo. Dr. Jensen received a BS degree in environmental engineering from Caltech in 1980 and MSPH and PhD degrees from the University of North Carolina at Chapel Hill in 1983 and 1988, respectively. His research and teaching interests are in assessment, problem-based learning, and drinking water treatment in low-resource environments. He has received numerous teaching and research awards, including the
. In the series of design courses he teaches, students design mechanical devices for use by disabled clients. The students are required to interview the client and design a device that will address one of the client’s unmet needs. The series concludes with students presenting prototypes of designs. The reactions of the client, as seen in their faces, is the ultimate grade. In addition to academic work, Dr Kleinke is a registered professional engineer and conducts seminars on innovation which are tailored to the needs of automotive engineers. Dr Kleinke’s recent publication, ”Capstones Lessons to Prepare Students for the Changing World of Corporate Innovation”, was awarded fist place as ”best paper” at a 2011
University. He is currently an Assistant Professor in the Department of Electrical and Computer Engineering at Auburn University. His research interests are in the areas of wireless networks and their applications, with current focuses on machine learning and AI in wireless networks, edge computing, and network security. He received IEEE INFOCOM 2014 Runner-up Best Paper Award as a co-author, ASU ECEE Palais Outstanding Doctoral Student Award in 2015, and NSF CAREER Award in 2022. He is currently an Associate Editor for IEEE Transactions on Wireless Com- munications, a Guest Editor for IEEE Transactions on Network Science and Engineering, and a Guest Editor for IEEE Open Journal of the Communications Society.Dr. Daniela
sustainable energy technologies. She holds a BS and MS in Engineering Mechanics and a PhD in Biomedical Engi- neering from Virginia Tech.Dr. Robin Dawn Anderson, James Madison University Robin D. Anderson serves as the Academic Unit Head for the Department of Graduate Psychology at James Madison University. She holds a doctorate in Assessment and Measurement. She previously served as the Associate Director of the Center for Assessment and Research Studies at JMU. Her areas of research include assessment practice and engineering education research.Cheryl Alyssa Welch Alyssa Welch is a Psychological Sciences master’s student in the concentration of Experimental Psychol- ogy, and a Graduate Teaching Assistant in the
from Auburn University in 2014. He is a contributor to the Australian Maths Trust, and member of the MASAMU international research group for mathematics.Dr. Carl Pettis Carl S. Pettis, Ph.D. Professor of Mathematics Department of Mathematics and Computer Science Al- abama State University Administrative role: Interim Associate Provost Office of Academic Affairs Alabama State UniversityDr. Uma Kannan Dr. Uma Kannan is Assistant Professor of Computer Information Systems in the College of Business Administration at Alabama State University, where she has taught since 2017. She received her Ph.D. degree in Cybersecurity from Auburn University in 2017. She specialized in Cybersecurity, particularly on
demonstrate an explicit connection to graduate education theory and criticalconstructs/concepts for success. Research has shown that addressing the topics in Table 1 cansignificantly impact student retention. These workshops provide students with tools forsuccessful degree navigation as well as a network of support at their institutions, in the broaderRDI cohort, and the larger online network. Underlying every session is the understanding that students are aiming to persist in anenvironment that was not designed for them. Through our sessions, we provided validation thatfeelings of not belonging are real and valid (Gardner & Holley, 2011; Gildersleeve et al., 2011;Wood et al., 2016), but also that they can succeed with supportive tools. To
looking at student support through this lens is that the MCCS provides a way todeconstruct student support and identify the underlying experiences. This multipronged approachis advantageous because, while specific interventions may not be transferable, students’experiences can transcend contexts within and across institutions. For example, instead ofinvestigating the impact of peer mentoring programs—which are not often identical—this lensallows us to investigate the impact of the overall perception of interactions that students havewith other students outside of the classroom.Research Design& RationaleThe development of the survey instrument is being carried out following best practices asdefined by DeVellis [2] and Gall, Gall & Borg [3
Business-Higher Education F. Increasing the Number of STEM Graduates: Insights from the U.S. STEM Education & Modeling Project. Business-Higher Education Forum;2010.5 Church, A. STEM Mentoring--Aspiration to Achievement. NCSSSMST Journal. 2010;16(1):13-14.6 Strayhorn, T.L. & Terrell, M.C. The Evolving Challenges of Black College Students: New Insights for Page 26.1146.10 Policy, Practice, and Research. ERIC; 2010.7 Snead-McDaniel, K. Exploration of the Lived Experiences of Undergraduate Science, Technology, Engineering, and Mathematics Minority Students, ProQuest LLC; 2010.8 Redmond, S.P
building and maintaining aquaponics systems and learnhow these systems can be applied in agricultural settings beyond traditional practices. Byengaging in this online learning experience, individuals will develop the skills needed to exploreaquaponics as a controlled environment system for potential future use in the industry. Theresults from this research will be used to submit external proposals that focus on data-drivenmethodologies for evaluating the educational impact and effectiveness of online aquaponicsinstruction. Overall, this study presents a structured framework for online aquaponics education,emphasizing accessibility and engagement. Future work will refine the instructional design basedon iterative feedback and learner performance
the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on retention and motivation, the dynamics of
universities, especially in STEMdisciplines. Research has shown that graduate students’ educational experiences aresignificantly impacted by their relationship with their adviser, yet this relationship is one of themost frequently mentioned challenges by international students. Based on the literature review,we argue that being aware of intercultural competence is essential for STEM faculty to providepositive advising experiences for international graduate students. Despite the promise ofintercultural competence promoting effective and healthy advising relationships, there islimited literature about its use at the graduate level in STEM. Because of the huge participationof Chinese students in the US educational system, this paper includes a fictional
integrated into existingprogrammatic structures for female engineering students, including Living-LearningCommunities and mentoring programs. This preliminary analysis, to set the stage for futureresearch, details the incorporation and impact of coaching in a seminar course while also layinggroundwork for addressing multiple research gaps in these areas: gender and coaching,13application of coaching in higher education,20 development of self-confidence withinprofessional roles and how educational programs can foster this,8 and preparing femaleengineering students for the transition to the workforce/graduate school with the aim ofincreasing their retention in said professions. As a means of identifying future possibleframeworks for further study of
psychology at both the graduate and undergraduate levels. Robin also serves as the Director of Research for the Engineering Leadership Project at the Institute for Leadership Education in Engineering which aims to identify how engineers lead in the workplace.Mr. Mike Klassen, Institute for Leadership Education in Engineering, University of Toronto Mike Klassen is the Leadership Programming Consultant at the Institute for Leadership Education in Engineering (ILead) at the University of Toronto. He designs and facilitates leadership programs for engineering students - with a range of focus from tangible skill development to organizational leadership to complex social problems. Mike has a Graduate Diploma in Social Innovation
Paper ID #39301In/authenticity in STEM Social Networks: How ”Out” are LGBTQ Studentswith their Peers in STEM?Dr. Bryce E. Hughes, Montana State University - Bozeman Bryce E. Hughes is an Associate Professor in Adult and Higher Education at Montana State University. His research interests encompass diversity and equity in engineering education, with a focus on LGBTQ students. He was recently awarded an NSF CAREER grant to study the experiences of LGBTQ under- graduates in STEM fields. He holds a Ph.D. in education from the University of California, Los Angeles, an M.A. in student development administration from Seattle
, and critiques for video game designing (Finkel, 2017). The instructor role varied by age and level of skill depending on organizational structure.In research apprenticeships, students worked directly with a graduate student or researcher andreceived additional support from a faculty advisor (Avent et al., 2018). Some programs traincollege students to teach and tutor high school students in STEM subject areas (Finkel, 2017). Afew programs incorporated skilled high school students to provide instruction to their peers(Tucker-Raymond et al., 2016). The role in which instructors served beyond instruction as asource of support and guidance which helped bolster students’ confidence.Theme 3: Formal and Informal Support Systems Support
the Department of Defense, aims to understand how near infrared light can be used to heal wounds. Outside of conducting research, Dr. Oliver is passionate about increasing diversity in STEM. She currently directs several undergraduate research programs which provide collegiate black women with the training and expertise needed to acquire jobs in the field of data science. Her passion resides in mentoring and sustaining minority students in STEM (science, technology, engineering, and mathematics), by studying and evaluating the best practices for people of color who are interested in pursuing careers in research and medicine. Dr. Oliver presents nationally and internationally to student groups, major scientific
and non-business courses. c American Society for Engineering Education, 2016 Generating Start-up Relevance in Capstone Projects1. IntroductionAccreditation Board for Engineering and Technology (ABET) requires students to complete acapstone design experience that prepares them for engineering practice through team-basedprojects incorporating the knowledge and skills acquired in earlier course work [1]- [4].While capstone course pedagogy differs widely from one program to another, in all cases,students are expected, through the process of completing the capstone project, to understanddesign constraints, such as economic factors, safety, reliability, ethics, and social impact. Inaddition, students are
University of Maryland. She has expertise in physics education research and engineering education research. Her work involves designing and researching contexts for learning (for students, educators, and faculty) within higher education. Her research draws from perspectives in anthropology, cultural psychology, and the learning sciences to focus on the role of culture and ideology in science learning and educational change. Her research interests include how to: (a) disrupt problematic cultural narratives in STEM (e.g. brilliance narratives, meritocracy, and individualistic competition); (b) cultivate equity-minded approaches in ed- ucational spheres, where educators take responsibility for racialized inequities in
Waterloo is developing a series of sixworkshops intended to be delivered to engineering students in all disciplines in their first threeyears of study. The first three workshops will provide an introduction to team-forming andbuilding, team communication, and conflict management. The last three workshops will providereinforcement and opportunities for application in the same areas and in multidisciplinary settings.This paper describes the first two workshops in this series. Their design is based on the principlethat teamwork skills are best learned by doing, i.e., by practicing in a context that approximatescommon team experiences in engineering. In the first workshop, students work in groups toconstruct a tower out of straws and connectors under
Paper ID #13613Engineering students teaching hands on engineering design challenges to un-derserved community familiesDr. Amy Hee Kim, Iridescent Amy Kim is the Sr. Director of Content Development at Iridescent, a science and engineering education nonprofit. She is trained in physical chemistry (Ph.D. University of Chicago) with a strong passion for improving STEM education in informal settings. In graduate school, she chose to pursue a career path where scientists can give back to their communities. She was a science policy fellow at the National Academy of Sciences where she learned how to effectively communicate
B.S. in Computer Engineering from Xavier University of Louisiana and an M.Ed. in Teacher Leadership from Lamar University.Dr. Carrie A. Obenland, Rice University Dr. Obenland is the Assistant Director for Outreach and Research at the Rice Office of STEM Engage- ment. She as her PhD in Chemistry from Rice University, as well as her Masters. Her graduate work was focused on chemical education. She earned her BS in Chemical Engineering from the University of Texas at Austin.Mr. Roger Ramirez, Rice University I am currently the Assistant Director for Mathematics at the Rice Office of STEM Engagement where I co-facilitate the Applied Mathematics Program!. I also lead a student program called Introduction to Research
Counseling, Education and Development, vol. 40, no. 2, pp. 208–217, 2001.[21] E. L. Brothers and B. Knox, “Best practices in retention of underrepresented minorities in science, technology, engineering, and mathematics (STEM) in the Tennessee Louis Stokes Alliance for Minority Participation (Tennessee LSAMP),” Journal of Intercultural Disciplines, vol. 11, pp. 71–84, 2013.[22] Glaser, B. G., & Strauss, A. L. (2017). Discovery of grounded theory: Strategies for qualitative research. Routledge.[23] Corbin, J., & Strauss, A. (2008). “Strategies for qualitative data analysis,” Basics of Qualitative Research. Techniques and procedures for developing grounded theory. SAGE Publications.[24] Denzin
,mechatronics and computer science, the curriculum design that emerges from this paper willserve as a multidisciplinary educational tool.IntroductionEngineering education has been largely the same for decades: students sit for a lecture, dohomework, and then take an exam. However, as technological advancements bring attention tonew methods of teaching and learning, many fields have begun to re-evaluate how to best impartknowledge to ensure that graduates are competent and well-prepared for their role in theworkforce. Significant declines in enrollment over previous years have also indicated a need forreform. Additionally, the COVID-19 pandemic has presented a unique challenge for engineeringcurricula that rely heavily on lecture-based content delivery
), American Institute for Aeronautics and Astronautics (AIAA), ASEE, ASME). Dr. Richard has authored or co-authored about 35 technical articles (about 30 of which are refereed publications). Dr. Richard teaches courses ranging from first-year engineering design, fluid mechanics, to space plasma propulsion.Dr. Charles Patrick Jr, Texas A&M University Charles Patrick Jr. is a Professor of Practice in the Department of Biomedical Engineering, Texas A & M University (TAMU). He is also a teaching and research fellow at the Institute for Engineering Education Innovation, TAMU and a member of the Engineering Education Faculty, TAMU. He has worked in higher education for more than 30 years at state and private universities
, some taught undergraduate and graduate engineering courses, andone held an administrative assignment in his Provost’s Office. All participants were White, male,and retired from the same doctoral-granting university with very high research activityrepresenting various engineering disciplines such as aerospace, biomedical, chemical, industrialsystems, and mechanical. All of the emeriti faculty had participated in the Increasing MinorityPresence within Academia through Continuous Training (IMPACT) mentoring program, whichpaired emeriti and URM early- and mid-career engineering faculty for career mentorship. TheIMPACT program is sponsored by a NSF INCLUDES Design and Developments Launch Pilotaward (17-4458).Chatbot responses were drawn from one-on
of internationalization inhigher education given by Dr. Jane Knight, who described it as a process of integrating aninternational dimension into teaching, research and service.5, 6, 7There have also been many professors from U.S. universities who have gone overseas to helpmake improvements to global higher education, who play important roles in global highereducation, and who provide services for changes to be implemented into the education systemsof other countries. This also serves as an opportunity for the U.S. professors to be able to learnabout other educational systems worldwide and then identify best practices that they canincorporate into their own educational system.8There are also many cultural benefits that can beobtained by the
empowered to create more inclusive learning spaces andlesson designs. In order to best meet ADVs’ academic needs, additional faculty and advisingstaff training and education needs to be made accessible across campuses, ensuring increasedawareness of pervasive veteran myths. Additionally, enhanced, iterative, Green Zone training oncampuses, in a context that explicitly incorporates knowledge about the existence and potentialharm of stereotypes, could be an important resource to include in diversity, equity, and inclusioninitiatives—as well as departmental curricular design forums—as we seek to create classroomexperiences where everyone feels like they belong in our classrooms.Future WorkBest practices for meeting the needs of our active duty and
in engineering. • Increase the participation of a significantly underrepresented group of students who have the potential to profoundly impact the field, but are at high-risk of academic failure.This year the site hosted nine engineering students, four female and five male. The participantsranged from 18 to 28 years of age and academic standings of sophomores to seniors. Eachstudent was assigned a focused research project in the field of cyber and physical security ofcritical infrastructure and was mentored by a dedicated faculty and graduate student. In additionto their individual projects, the students participated in afternoon laboratory rotations twice aweek for seven weeks to expose them to the multidisciplinary nature of critical