
Paper ID #6601

A CASE FOR PYTHON SCRIPTING IN UNDERGRADUATE ENGINEER-
ING TECHNOLOGY

Dr. jai p agrawal, Purdue University, Calumet (Tech)
Prof. Omer Farook, Purdue University, Calumet (Tech)

c©American Society for Engineering Education, 2013

P
age 23.22.1



A CASE FOR PYTHON SCRIPTING IN  

UNDERGRADUATE ENGINEERING TECHNOLOGY  

Abstract 
 
This paper presents a new course in Python Programming in the undergraduate program of 
study in Engineering/Technology/Science. Motive behind using Python is that it is a pro-
gramming language that lets interactive and quick design and effective integration with mod-
ern systems. Python usage leads to immediate gains in productivity and lower maintenance 
costs. Python is becoming the work-horse in all new computer science activity in the modern 
industry. It supports multi programming paradigms, including object-oriented and structured 
programming. Python elegantly combines the number crunching capability like that of 
MATLAB with the programming ease of C based languages with a difference of better rea-
dability and interactivity . 
  
The Python Programming is a 400-level, 3-credit course that contains all five components:  
a) the basic elements like the statements, comments, data types, data manipulation in-
put/output and control flow, b) data structures like dictionaries, lists, tuples, and classes c) 
structured and object oriented programming methods,  d) interactive graphic programming 
and e) the html, xml and http processing. 
 
The paper elaborates the pedagogy of classroom delivery and impact on student comprehen-
sion, conceptual understanding, learning and mastering of Python philosophy. Both methods 
of vertical and horizontal learning methods are used in this class. All programs that students 
write are added to a class repertoire which the current and future students will have access to 
for enhanced horizontal learning. Students are required to a design a project at the end of the 
class in which student teams of twos work on a project using python and share with the whole 
class.  
 
The paper presents the student feedback and its analysis. The authors intend that this paper 
serves as a pointer to fellow academicians in bringing the technological currency in the un-
dergraduate Engineering/Technology/Science programs. 
 

I. Introduction 

Currently most of the Curriculum programs in Electrical, Electronic, Computer and similar 
tracks use one or two programming courses. Most of these programs use either Basic or C++. 
Of the more recent languages; Java, PHP, Python, Ruby use of Python is gaining ground 
among modern computer programmers. Learning Python is easier, less grammatical and uses 
more natural syntax. These two reasons are enough to make the case for teaching it as the 
first programming language.  

Python is easy to learn and simple to program. Python is highly readable. It is a high-
level programming language that can be used for a wide variety of programming tasks that an 
electrical/computer graduate will encounter in their professional carriers for at least five 
years.  

In modern computer industry, Python is used extensively for system administration and main-
tenance tasks. “As of October 2012, Python ranks at position 8 in the TIOBE Programming 
Community Index.[1] Large organizations that make use of Python include Google, Yahoo, 

P
age 23.22.2



CERN, NASA, ILM and ITA.”[2]. Google has developed a language GO for its website which 
is very similar to the Python itself.  

Python is used in web applications, such as the Apache web server and in the web application 
frameworks like Django, Pylons, Pyramid, web2py, Flask and Zope. Python is standard com-
ponent in several operating systems, such as several Linux distributions, OS X, Ubuntu and 
Fedora. The highly popular Raspberry Pi single-board computer project has adopted Python 
as its principal user programming language. 

Python is an interpreted programming language that is automatically compiled into machine 
code (executable code) and executed immediately. The ensuing machine code is saved auto-
matically, so that any more compilation is not needed so long as the source code is un-
changed. It is also a dynamically typed language and highly interactive like the command-
line MATLAB [3] instructions.  

Most important reason for using Python, to some educators, is that it is open source. This 
enables easy access for students. It may “fire up” more students than otherwise. It has exten-
sive open source library and it is continuously growing. As all educators know so well that 
learning programming requires more off-class engagement by students. It enables more inter-
active exercises than the in-class education. This is certainly helpful in learning among stu-
dents at the horizontal level.  

Being open source, Python programmers have access to extensive libraries like NumPy, Sci-
Py and Matplotlib for scientific computing. PiCloud provides supercomputing processing ca-
pacity on the cloud, using a Python interface. 

 

II.  Features of Python 

2.1. Indenting 

The most unusual aspect of Python is that whitespace is significant; instead of block delimi-
ters (braces → "{}" in the C family of languages), indentation is used to indicate where 
blocks begin and end. An increase in indentation comes after certain statements; a decrease in 
indentation signifies the end of the current block. For example, the following Python code 
can be interactively typed at an interpreter prompt.  "Hello World!" appears on the user 
screen immediately by pressing the Enter key after the statement: 

>>> print “Hello World!” 
Hello World! 

2.2. Multi-Platform  

Python can run on Microsoft Windows, Macintosh and all Linux distributions with ease. This 
renders the program coded in Python very portable, as any program written for one Platform 
can easily be used at another. 

2.3. Declaration-free Data  

Unlike C/C++ Python does not require declaration of data types. The interpreter automatical-
ly recognizes the type of data when entered. Example: 

>>> x=3.4   #a float 
>>> y=5      # an integer 
>>> x*y 

P
age 23.22.3



17.0 

2.4. Rich Element Types  

Python provides a powerful assortment of built-in types of data (e.g., lists, dictionaries and 
strings), a number of built-in functions, and constructs. For example, loop constructs that can 
iterate over items in a collection instead of being limited to a simple range of integer values.  

 

2.5. Programming/Modes: Interactive /Scripting  

Interactive mode is a command line shell which gives immediate feedback after entering a 
statement. The Python continues to run previously fed statements in active memory for use in 
subsequent statements.  

The prompt >>> on the screen shows that it is in the interactive mode. In interactive mode 
what you type is immediately run. A sample interactive session: 

>>> 5*4 
20 
>>> "hello"*4 
'hellohellohellohello' 

If one ever feels the need to play with new Python statements, just go into interactive mode 
and try them out. 

The script mode is the mode where the python statements are written in a file, saved as 
script_mode.py,        

#script_mode.py      script mode programming 
print 5*4 
print "hello"*4 

The script is run from the script window itself (one of many ways it can be executed). The 
result is shown in the interpreter window: 

>>> =========================== RESTART 
============================ 
>>>  
20 
hellohellohellohello 

Alternatively import the script as a module in the interpreter and run by pressing Enter. 

>>> import script_mode 
20 
hellohellohellohello 

 

To make the experience interactive, we write the following script in area_of_circle.py file: 

#area_of_circle.py 

radius=input("Specify the radius in meters and then enter: ") 

area = 3.1415*radius**2 

print "the area of circle of radius = ", radius, " meters is = ",  area, "square meters." 

P
age 23.22.4



 

Input is a built in function to get the input from the keyboard. The input from the keyboard is 
evaluated and then assigned to the variable radius. The input is basically a delayed input. 

Save and Run either in the script window or import in the interpreter window as a module. 
The result in the interpreter window is 

Specify the radius in meters and then enter: 5 
the area of circle of radius =  5  meters is =  78.5375 square meters. 

2.6. Multiple Programming Paradigms  

Python supports multiple programming paradigms: a) sequential programming b) structured 
programming and c) object-oriented programming. The later being the preferred paradigm, is 
also recommended by the in the first class in programming. 

2.6.1. Example of a structured programming (function based) is shown below. Save, and 
Run and then invoke from the interpreter window as shown: 

 

 

 

Person is passed as the argument within the ( ) in the function header. 

 

 

 

 

2.6.2. Object-Oriented Programming in Python 

Object-oriented paradigm is to view a complex system as the interaction of simpler objects.  
Objects  (entities, items or things) have methods (functions, actions or events) 
and properties (values, attributes or characteristics). Objects interact with other objects. In 
the Object-Oriented_Programming approach, the objects are defined 
with methods and properties, resulting in more readable, more reusable code. 

Example of a projectile object: 

The projectile is specified by angle of launch, initial height and the initial velocity of launch. 
The program calculates the horizontal position, vertical position and the corresponding veloc-
ities at every second. 

We will define a class Projectile in a module projectile.py. 
 
# projectile.py 
from math import pi, sin, cos 
 
class Projectile: 
    def __init__(self, angle, velocity, height): 
        self.xpos = 0.0 
        self.ypos = height 
        theta = pi * angle / 180.0 

#Greetings.py   module name 
def greetings(person):  #the function header 
    print "Hello", person 
    print "How are you today!!" 

>>> greetings ("John") 

Hello John 
How are you today!! 

P
age 23.22.5



        self.xvel = velocity * cos(theta) 
        self.yvel = velocity * sin(theta) 
    def update(self, time): 
        self.xpos = self.xpos + time * self.xvel 
        yvel1 = self.yvel - 9.8 * time 
        self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0 
        self.yvel = yvel1 
    def getY(self): 
        return self.ypos 
    def getX(self): 
        return self.xpos 
 
Now we write a Python script cball2.py where we use the just created class, 
 
#cball2.py 
from  projectile  import  Projectile   
# note the first projectile is the module and second Projectile is the class there in 
 
def getInputs(): 
    a = input("Enter the launch angle (in degrees): ") 
    v = input("Enter the initial velocity (in meters/sec): ") 
    h = input("Enter the initial height (in meters): ") 
    t = input("Enter the time interval between position calculations: ") 
    return a,v,h,t 
 
def main(): 
    angle, vel, h0, time = getInputs() 
    cball = Projectile(angle, vel, h0) #instantiation of the object cball in the class Projectile 
    while cball.getY() >= 0: 
        cball.update(time) 
         
    print "\nDistance traveled: %0.1f meters." % (cball.getX()) 
 
Now run the Python script in the Interpreter. 
 
>>> import cball2 
>>> main() 
Enter the launch angle (in degrees): 30 
Enter the initial velocity (in meters/sec): 50 
Enter the initial height (in meters): 2 
Enter the time interval between position calculations: .1 
 
The python returns the result in the interpreter window. 
Distance traveled: 225.2 meters. 

 

 

 

 

P
age 23.22.6



III. Course Syllabus and Description 

ECET 49900 - Dynamic Programming with Python 
class 3, lab 0, credit 3 
 
Python is a programming language that lets interactive and quick design and effective inte-
gration with modern systems. Use of Python leads to immediate gains in productivity and 
lower maintenance costs. Python is becoming the work-horse in all new computer science 
activity in the modern industry. It supports multi programming paradigms, including object-
oriented and structured programming. Python elegantly combines the number crunching ca-
pability like that of MATLAB with the programming ease of C based languages with a dif-
ference of better readability and interactivity. Topics cover  a) the basic elements like the 
statements, comments, data types, data manipulation input/output  and control flow, b) data 
structures like dictionaries, lists, tuples, and classes c) structured and object oriented pro-
gramming methods,  d) interactive graphic programming and e) the html, xml and http 
processing. All programs that student will be collected in the form of a class repertoire which 
the future students will have access to for enhanced horizontal learning.   
 

IV. Course Pedagogy 

The pedagogy of the course is based on Outcome Base d Education5 , and utilizes the interac-
tive model of learning6. All the students maintain an online portfolio of their work. The sys-
tem designed in the laboratory to perform a specific task is the core measurement as the 
learning outcome of the course. The laboratory performance of the course is performed in 
teams of two/three students. This mode provides a platform for horizontal learning through 
active and engaged discourse and discussion. Students are empowered to charter their learn-
ing and feed their curiosity. These classroom practices and laboratory environment provides a 
challenging and invigorating environment that prepares them for a lifelong learning process 
and career path.  

 

Part 1 – Basic 
1. Intro to Python      2 hours 
2. Basics        2 hours 
3. Sequences (Strings, Lists, Tuples, Dictionaries, Sets)  2 hours 
4. Math (use NumPy and Matplotlib modules)   2 hours 
5. Functions       2 hours 
6. String manipulations      2 hours 
7. Control structures      2 hours  
8. Python Project  I      1 hour  
9. Test 1        1 hour 

 
Part 2 – Intermediate 

1. Classes       4 hours 
2. Gui – an introduction      2 hours  
3. Object Oriented Design     6 hours 
4. File operations       2 hours 
5. Python Project  II      1 hour 
6. Test 2        1 hour 

Part 3 – Advanced 

P
age 23.22.7



1. Database       6 hours  
2. Web programming      4 hours 
3. Interfacing with C and MATLAB    4 hours  
4. Final Test        2 hours  

 
 
 
 
 
An example of using open-source plotting example is shown below: 

#sine_plot.py 
from pylab import * 
 
f=1.0           #frequency 1 Hz 
T=1/f           #period 
A= 2.0         #Peak amplitude 
#time array from 0 to T in 100 steps   
t = arange(0.0, T, T/100)    
sine = A*sin(2*pi*f*t) 
plot(t, sine, linewidth=1.0) 
xlabel('time (seconds)') 
ylabel('voltage (V)') 
title('Sinewave') 
grid(True) 
show() 
 
 
 
Course Assignments  
The course requires a weekly position paper that ex 
pounds the conceptual understanding of the  
subject matter content and inferences drawn from th 
e laboratory performance. The course  
assignments are submitted on line. Each student mai 
ntains an online portfolio of the work.  

  
 
 V.  Expected Outcomes: Tangible and Intangible 

 
Learning objects in Spring 2013: Students should be able to program exercises in  

1. basic elements of programming 
2. data structures 
3. structured and OOP methods 
4. Web programming 
5. interfacing with C and MATLAB 

 
 
 
 
 

P
age 23.22.8



VI.  Student and Faculty Feedback Regarding Developed Course. 
 
This class is offered as an independent study course in the Spring 2013 semester because of 
cost cutting measures there is not much room for experimental courses being offered.. The 
authors will report the experiences in the final presentation at the ASEE conference.  
 
VII. Summary 
 
This paper presents the motivation for a new course in Python Programming in the undergra-
duate program of study in Engineering/Technology/Science. Python is easy to learn, simple 
and very readable. Python interpreter and associated software is open source, supported by a 
wide community of users and libraries, therefore, it is easily accessible for off-class learning.  
Python empowers the learners to explore, interact dynamically. Python can be easily embed-
ded in system design leads to immediate gains in productivity and lower maintenance costs. 
The paper presents the details of a 3-credit semester level course for beginners in the under-
graduate programs in Engineering/Technology/Science.   
 

 
 
 
 
 

 
Bibliography 
 
[1]  http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html 
[2]  http://en.wikipedia.org/wiki/TIOBE_Programming_Community_Index 
[3]  http://www.mathworks.com/ 
[4]  http://en.wikibooks.org/wiki/Python_Programming 
[5] Omer Farook, Jai P. Agrawal, Chandra R. Sekhar, Essaid Bouktache, Ashfaq Ahmed “Outcome Based  

Education and Assessment” , Proceedings of the 2006 American Society for Engineering Education 
Annual  Conference & Exposition June 20 -23, 2006. Chicago, IL 

[6]  http://www.learning-theories.com/ 
 
 
 

P
age 23.22.9


