
Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

Session 2793

A Case for Teaching Mixed Logic in Digital Design

David L. Livingston
Department of Electrical Engineering, Virginia Military Institute

I. Introduction

An important aspect of any logic design problem is an easy and direct design method
which results in properly documented components; i.e., schematics, expressions, truth tables,
etc., which accurately convey the designer’s original thought process. The mixed logic
approach, which meets the above requirements, is proposed as a method to be taught in digital
design courses.

To understand mixed logic, the concepts of positive and negative logic and assertion
levels must first be defined. Positive logic is defined as a high voltage level representing a logic
1 and a low voltage level representing a logic 0. Negative logic is the reverse, i.e., a low voltage
level represents a logic 1 and a high voltage level represents a logic 0. Assertion levels
determine whether a net or signal line in a digital circuit is to be interpreted as positive logic or
negative logic. A negative logic assertion level is called active low and is represented by the
presence of bubbles on the net in the schematic and a .L suffix on the logic variable. A positive
logic assertion level is called active high and is represented by the absence of bubbles on the net
in the schematic and a .H suffix on the logic variable. Mixed logic is the use of both positive
and negative logic representations in a digital circuit design.

Many authors of introductory digital texts mention mixed logic – sometimes directly,
often times as a graphical technique – but use the positive logic approach almost exclusively 1,2.
It is the purpose of this paper to show that a mixed logic approach is superior to a strictly
positive logic approach and discuss the pedagogy of mixed logic in digital design courses. A
very brief discussion of mixed logic principles is presented in the sequel. A complete coverage
of mixed logic can be found in Prosser and Winkel 3 and Breeding 4.

The remainder of the paper is organized as follows. Section II emphasizes the
differences between logic functions and logic gates. A synthesis procedure is presented and
compared to a positive logic approach with an example in section III. In section IV the analysis
of mixed logic circuits is discussed. The pedagogy of mixed logic is discussed in section V and
conclusions are drawn in section VI.

II. Functions Vs. Gates

In a mixed logic approach to digital design, it’s important to make a distinction between
logic functions and gates. Logic functions compose the underlying mathematical representation

P
age 6.6.1

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

or model that forms the basis of the solution to a given design problem, whereas gates are the
physical implementation of the solution. Logic functions are generally represented in three
ways: 1) as a set of algebraic expressions over logical variables, 2) in symbolic form using the
standard symbols for AND and OR and slashes for NOT, and 3) in the form of a truth table
using 0 and 1 for false and true, respectively. Note, the only functions required are AND, OR
and NOT – XOR and MATCH functions can also be used where appropriate. NAND and NOR
functions are not necessary in a mixed logic approach.

Gates used in mixed logic design include AND, OR, NAND, and NOR gates and
inverters. The names for the gates are derived from the positive logic interpretation; it can be
shown that a negative logic interpretation results in the dual functions. To understand the mixed
logic approach, it is important to learn the transfer characteristic or voltage table for each gate.
The voltage tables for the five basic gates are shown in Table 1 – L is used to represent low
voltage and H high voltage and the functional symbols are used for the positive logic
interpretation. Note that an inverter is not necessarily a NOT gate; it simply changes assertion
levels.

A B AB A+B A*B A8B A’

L L L L H H H

L H L H H L H

H L L H H L L

H H H H L L L

Table 1. Voltage tables for five gates.

The logic function that is implemented by a particular gate depends on the assertion
levels of the input and output signals. For example, if all i/o signals are active high, an AND
gate implements the AND function as shown in Table 2. However, if all i/o signals are active
low, the same AND gate implements the OR function as shown in Table 3. Note that the voltage
tables are the same for both Table 2 and Table 3.

NAND and NOR gates should be used to implement only AND and OR functions and

inverters. These are the cases from which mixed logic gets the “mixed” part of its name. To use
a NAND gate to implement an AND function, the assertion levels of the input signals are active
high and the assertion level of the output signal is active low. To use a NAND gate to
implement the OR function, the assertion levels from the AND function should be reversed. The
two cases are demonstrated in Tables 4 and 5. Note that again, the voltage tables for both
functions are the same being that the NAND gate is used in both cases. NOR gates are used in a
dual fashion.

P
age 6.6.2

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

A.H B.H C.H

0, L 0, L 0, L

0, L 1, H 0, L

1, H 0, L 0, L

1, H 1, H 1, H

Table 2. AND function using AND gate.

A.L B.L C.L

0, H 0, H 0, H

0, H 1, L 1, L

1, L 0, H 1, L

1, L 1, L 1, L

Table 3. OR function using AND gate.

A.L B.L C.H

0, H 0, H 0, L

0, H 1, L 1, H

1, L 0, H 1, H

1, L 1, L 1, H

Table 5. OR function using a NAND gate.

A.H B.H C.L

0, L 0, L 0, H

0, L 1, H 0, H

1, H 0, L 0, H

1, H 1, H 1, L

Table 4. AND function using a NAND gate.

Gate symbols should represent both logic and assertion levels. For example, an AND
gate used to implement an AND function would use the standard AND symbol as shown in
Figure 1. If the same gate is used to implement the OR function, the symbol used should be the
OR symbol with bubbles to indicate the negative logic assertion levels as shown in Figure 2.

Figure 1. AND function using AND gate. Figure 2. OR function using AND gate.

III. Synthesis

The synthesis of digital systems using multiple types of gates including NAND and NOR
gates is an area in which the mixed logic approach surpasses the positive logic approach. Using
positive logic only for designs with NANDs and NORs requires the repeated use of double
complements and de Morgan’s Laws. This results in a significant amount of algebraic
manipulation which is error-prone. The steps for designing a digital circuit using mixed logic
follow. The process will be illustrated with an example that compares both methods.

P
age 6.6.3

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

Mixed Logic Synthesis Method

1) Create a logic diagram directly from logic expressions using AND and OR symbols
and a slash for NOT.

2) Determine the assertion levels of all input and output signals adding bubbles to each
active low signal.

3) Convert AND and OR symbols to gate symbols by adding bubbles and add a bubble
to one side of each slash, attempting to create matching bubble pairs where possible.

4) Insert inverters for all unmatched bubbles.
5) Optionally remove slashes.

Example

Design a circuit for the following expression and assertion levels using 2-input NAND
gates and inverters only.

Y = (A’B + CD) + E; Y.H, A.H, B.L, C.H, D.H, E.L

Positive Logic Solution

1) For positive logic we must complement the B and E variables since they are active
low: Y = (A’B’ + CD) + E’

2) Manipulate into NAND functions:
Y = (A’B’ + CD) + E’ = (A’B’ + CD)’‘ + E’
Y = ((A’B’)’(CD)’)’ + E’ = ((A’*B’)(C*D))’ + E’
Y = ((A’*B’)*(C*D)) + E’ = (((A’*B’)*(C*D)) + E’)’‘
Y = (((A’*B’)*(C*D))’ E’‘)’ = (((A’*B’)*(C*D))’*E)

3) Draw schematic using NANDs and inverters.

P
age 6.6.4

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

Mixed Logic Solution

1) Draw the symbolic representation using AND and OR symbols and slashes for NOT.

2) Add bubbles to all active low signals.

3) Add bubbles to the outputs of AND symbols and inputs of OR symbols to change
them to NAND gates. Add a bubble to one side of each slash attempting to create
bubble pairs.

P
age 6.6.5

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

4) Insert inverters where necessary to create bubble pairs.

Comparing the results of both the positive logic implementation and the mixed logic
implementation, the resulting schematics represent the same physical circuit. However, the
original logic expression is clearly represented by the mixed logic circuit.

IV) Analysis

As with synthesis, the use of mixed logic has an advantage over positive logic when
analyzing a digital circuit. This is particularly true when obtaining the logical expressions from
the schematic diagrams. Using positive logic requires the repeated use of de Morgan’s Laws for
circuits with NAND and NOR gates and inverters.

Analyzing a mixed logic circuit is straight-forward. If the schematic has had slashes
removed, insert them at every place where there is an unmatched bubble. At this point, simply
ignore the bubbles and write the logical expression directly from the diagram interpreting slashes
as the NOT function. Note, inverters are simply assertion level translators from positive-to-
negative or negative-to-positive logic and can be ignored.

The logic circuit can be easily evaluated for constant inputs using both logic values and
voltage levels. If a logic value is known, the voltage level is easily determined from the assertion
level. For example, a logic 0 at a net where there is a pair of bubbles results in a high voltage
level, since the assertion level is active low.

V) Teaching Mixed Logic

The introduction of the mixed logic method should occur at the time implementations are
discussed. This generally happens after covering standard forms of logic expressions and
possibly after minimization with Karnaugh maps. It’s certainly appropriate to start mixed logic
when NAND and NOR gates and multilevel implementations are presented.

P
age 6.6.6

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

An appropriate presentation schedule is as follows:

1) Motivation of developing a logic design method which is straight-forward and self-
documenting.

2) Definitions of assertion levels, positive, negative and mixed logic.
3) Survey of various gates, inverters and buffers, their associated voltage tables, and use

for the three primitive logic functions.
4) Synthesis.
5) Analysis.
6) Conversion from positive logic to mixed logic.

Of utmost importance is stressing of the difference between logic functions and logic
gates. This is somewhat complicated by the use of positive logic function names for gates.
Wakerly explains duality by demonstrating that both AND gates and OR gates can be used to
implement both AND and OR functions2. He uses the terms “type 1" and “type 2" gates to try to
dispel the confusion between functions and gates. The difference between functions and gates
can be reinforced in graphical presentations by pointing to a symbol and asking students what
gate the symbol represents and what logic function is being implemented.

Several problems can occur with teaching the mixed logic approach. If a student has
prior experience with positive logic, mixed logic can be confusing. A particular point of
confusion is the fact that inverters are not always NOT gates. This can be cleared by drilling the
concept of assertion levels as they’re related to logic levels and voltage levels. Another point of
confusion is between assertion levels and voltage levels. This occurs due to the use of H and L
for high and low voltage levels and as suffixes for positive logic and negative logic, and the use
of the terms active high and active low. This might be rectified by using indicators other than
high and low, such as positive and negative, to label assertion levels.

VI. Conclusions

The mixed logic method produces results which are easily obtained. Since mixed logic is
a graphical approach, students are less likely to make errors in the design process as they would
if a large amount of algebraic manipulation is involved. The results of the method also reflect
the original thought process of the designer. Therefore communication between members of a
design team is facilitated. These benefits warrant the teaching of mixed logic in digital logic
design courses.

P
age 6.6.7

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright ©
2001, American Society for Engineering Education

References

1. M. Mano, Digital Design, 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.
2. J. F. Wakerly, Digital Design, Principles and Practices, 3rd Ed. Updated. Englewood Cliffs, NJ: Prentice-Hall,

Inc., 2001.
3. F. P. Prosser and D. E. Winkel, The Art of Digital Design, An Introduction to Top-Down Design, 2nd Ed.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.
4. K. J. Breeding, Digital Design Fundamentals, 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1992.

DAVID L. LIVINGSTON
David Livingston is an Associate Professor of Electrical Engineering at Virginia Military Institute. He has also been
employed as a computer engineer for IBM Endicott Labs and was on the faculty at Old Dominion University and
Virginia Western Community College. Dr. Livingston received the B.S.E., M.E. and Ph.D degrees in Electrical
Engineering at Old Dominion University. He is a licensed professional engineer in the Commonwealth of Virginia
and is a member of IEEE, ASEE, HKN, and the Skeptics Society.

P
age 6.6.8

