
Paper ID #18882

A Case Study in Teaching Agile Software Product Line Development

Dr. Derek David Riley, Milwaukee School of Engineering

Dr. Riley completed his PhD work in modeling and simulation at Vanderbilt University in 2009 and has
expanded his scholarly and professional activity to include mobile computing and software engineering.
He is currently a faculty member at the Milwaukee School of Engineering.

c©American Society for Engineering Education, 2017

A Case Study in Teaching Agile Software Product Line Development

Derek Riley

Milwaukee School of Engineering
riley@msoe.edu

Abstract
The development of Software Product Lines (SPL) hold promise to improve the efficiency of

writing and maintaining large software projects, but SPL engineering can be difficult to teach in a

software engineering classroom for many reasons. The development of a non-trivial SPL typically

takes longer than the time available in a typical semester, student interest in SPL engineering is

rarely inherent, and learning outcomes from different approaches to SPL engineering are not

always consistent or aligned with traditional software engineering learning goals. Further,

applying SPL methods in an agile development environment can be challenging because agile

methods typically prioritize features and bug fixes over SPL (maintainability) goals.

In this work we investigate a couple of research questions including: can incorporating SPL into

an undergraduate software engineering course sequence improve student learning outcomes

related to writing maintainable, reliable, and reusable code? We are also interested in answering

the question of whether incorporating SPL can improve the quality of documentation created by

students. To work toward answers to these questions we present a case study of the two-semester

development of an SPL in a senior-level undergraduate software engineering course sequence

using a real-world mobile application. We present key strategies for motivating positive learning

outcomes including an adapted Scrum process designed to incorporate SPL engineering. We

found that our approach improved student application of reusability theory, benefitted

documentation quality, increased student satisfaction with the course, and increased the percentage

of code written reused by students from semester to semester.

1. Introduction

A Software Product Line (SPL) is a set of software systems that share common assets and are easy

to deploy and configure for new environments [6]. There are many approaches that can be used to

create an SPL including model-driven development, modularization refactoring, the use of SPL

design patterns, reuse design, and others, but few software engineering classes have time to teach

or apply these concepts. Many of the strategies within SPL engineering reinforce good software

engineering practices such as reusability, maintainability, and testability, so incorporating these

concepts using an applied project in a software engineering course is beneficial to students to

prepare them for programming challenges they will face in the future [18]. An inability to

effectively apply SPL engineering concepts can lead software engineers to build software in a way

that leads to inefficiencies, time overruns, and difficult-to-maintain software [14,18].

Development of an SPL for mobile applications is attractive due to the need to support multiple

(Android, iOS, and potentially others), regularly-updating operating systems to reach the largest

number of potential users. Differences between screen sizes, orientations, and features make

developing and maintaining an SPL for mobile platforms especially challenging. Fortunately, the

challenges are easily understood by students, and the benefits can also be realized in a class.

Hands-on teaching of the basic strategies of SPL engineering, seeing good mobile examples, and

using standardized libraries instead of writing custom code are critical to making mobile SPL

engineering work in the classroom [4].

Scrum is a commonly-used software development process that lends itself well to mobile

development [20], and students typically prefer using an agile methodology to traditional processes

[15]. Unfortunately, the product owner in Scrum is left to make decisions about priority of tasks

for the team, and unless the product owner is SPL savvy, new features are easily prioritized over

SPL engineering. Existing SPL development strategies exist, but applying the approaches in a

classroom environment can lead to difficult-to-maintain software and limited learning outcomes

[18].

Creating a cohesive, productive team is a known challenge in software engineering classrooms,

and while many strategies exist to improve productivity and grades for software engineering teams,

this problem continues to persist. It is also easy for weak team members to hide behind stronger

programmers. Many strategies exist to address this challenge, but it still persists [11].

In this work we investigate a couple of research questions including: can incorporating SPL into

an undergraduate software engineering course sequence improve student learning outcomes

related to writing maintainable, reliable, and reusable code? We are also interested in answering

the question of whether incorporating SPL can improve the quality of documentation created by

students. To work toward answers to these questions we present a case study of four years of

teaching a two-semester course at a primarily undergraduate institution where students started and

continued development of an SPL using a real-world project.

The class worked as a collaborative team on mobile applications (Android and iOS) as well as a

web database that helps local transit riders find when the next bus is arriving at their location. The

two-semester course sequence was originally designed to teach applied software engineering, and

over the four years of this case study, an adapted Scrum process as well as SPL engineering were

incorporated to improve student learning outcomes. The original transit app software developed

by the first class (using Scrum without any SPL focus) took over two months to re-deploy for a

new transit system. Updates made by subsequent classes where SPL practices were emphasized

have improved the re-deployment time so that current versions of the software can now be

redeployed in a matter of minutes.

In the process of re-deploying the transit app, we developed an adaptation of Scrum to incorporate

the development of SPL practices into the traditional Scrum roles and documentation. Our

adaptation of Scrum adds an SPL owner (usually the instructor), who balances the needs of

maintainability goals with new features and bug fixes for the team, as well as some additional

documents and ceremonies.

We present key lessons learned through this process of teaching SPL engineering using Scrum for

an applied project. We found that our approach improved student application of reusability

concepts, documentation quality, student satisfaction with the course, and increased the likelihood

that code written by one semester’s class will be reused by students in a future semester.

2. Related Works

Planning for SPL development has been analyzed from several viewpoints including: asset

developer [10], requirements engineer, and product developer [8]. The application of method

engineering approaches to SPLs have allowed SPLs to encompass a more comprehensive view of

the software to improve consistency and alignment with goals for the software [8], and the

application of SPLs has been done in the classroom in dedicated classes. Effective planning for

SPL development requires familiarity with relevant SPL methods and the core product being

developed [18].

SPLs have been developed for mobile applications previously. A product line architecture was

developed for a role-playing game on an early smartphone that allowed developers to improve

performance and development speed through the incorporation of SPL development methods [21].

Combining incremental prototyping and plan-driven development processes has also proven

effective for an SPL in a mobile game environment using aspect-oriented programming [1].

Agile development processes such as Scrum [20] are growing in popularity, and their combination

with reuse-oriented development has been studied previously. Encouraging reuse can be

challenging in agile methods [5], but strategies that combine long-term reuse strategies into agile

methods using feature-orientation has been shown to improve product reuse without compromising

agility of the process [12]. SPL methods have been previously combined with agile processes such

as Scrum with positive results despite the inherent clash of priorities in SPL techniques and agile

methods [16]. However, these modifications to Scrum can add significant overhead and limit the

viability of the approach especially in a classroom. Further, it can be difficult to prioritize SPL

engineering over new feature incorporation when task prioritization is driven only by the product

owner. While agile development methods and SPL engineering share similar goals,

incompatibilities exist, due to the long-viewed nature of SPL engineering and the lightweight and

short-term planning required of many agile development methods [17, 16]. However, using

feature-driven development, SPL have been implemented and have been shown to be compatible

with certain agile methods in industry, but a full team understanding of SPL is required to achieve

the benefits of the approach [17].

Software reuse is an important topic in SPLs, and several papers have addressed software reuse

from various perspectives. The concept of reusing more than just code is critical [21,13]. Agile

development does not always encourage reuse, and the classroom environment inherently

deemphasizes reuse of software due to guaranteed turnover of the teams, so care must be taken to

encourage reuse engineering when developing software using these methods.

Mobile application development is a relatively young field, but some research has been done in

how to teach students about mobile application development to prepare them for challenges they

will face or how to learn a new programming language [4]. One promising approach incorporates

“Challenge Based Learning” into Scrum to better prepare learners for the obstacles they will face

in real teams [19]. A drawback of this approach is that unless reuse coordination is emphasized

throughout the semester, it is easy for young developers to ignore reuse in favor of completing

other features or bug fixes.

3. SPL course

Software engineering is a commonly-required course or pair of courses in many computer science

programs, and learning goals for these courses tend to be similar. At UW-Parkside, software

engineering is taught as a senior-level course sequence over 2 semesters and students are expected

to work on a real-world project to gain practical experience that will prepare them for graduate

school or future careers.

The UW-Parkside the courses aim to educate and provide experience for students working as a

team, using various software process models, doing requirements gathering, exercising design

concepts, applying testing approaches, and understanding maintainability concepts. Many

software engineering courses have one or multiple community-based projects that have non-

technical clients the students have to interact with to gain experience with requirements elicitation,

testing, and other communication and UW-Parkside uses this strategy to further develop students’

experience.

Incorporating an SPL focus into the class was an accidental strategy developed in a response to

poor learning outcomes in testing, maintainability, and documentation creation. Prior to the SPL

focus, students could answer basic exam questions on testing, reusability, and maintenance, but

they struggled to apply the concepts to projects. We found that students were eager to learn what

they needed to achieve the grade they wanted on homework, quizzes, and tests, but they rarely

were able to effectively apply the concepts to their projects.

In response to the realization that students had these poor learning outcomes, we chose to try

continuing a project from semester to semester and focus on code reuse and maintainability. To

formalize the efforts, we attempted to apply formal SPL concepts in the classroom within the

Scrum framework and compare outcomes with and without the SPL efforts. Only one section of

software engineering courses is taught each year at UW-Parkside, so the comparisons were made

between previous years (without SPL) and more recent offerings (with SPL).

Students are not explicitly told that the class is developing an SPL; instead they are given code and

documentation from previous classes at the beginning of the semester, and they have to learn how

to deploy it and use it from day one. Students quickly understand the need for documentation and

as they start working with the software, and they understand the importance of writing reusable

code as they are forced to put in extra effort to rewrite parts of the code that aren’t consistent with

the documentation. Additionally, we establish metrics for SPL quality (such as amount of time to

deploy) from the beginning to establish a clear metric for success or failure. To continue to

emphasize the importance of SPL goals during the semester, we have made modifications to the

Scrum methodology, which we describe in a later section of this paper.

As part of the SPL development approach, we use modern coordination and collaboration tools

including Slack (slack.com), Trello (trello.com), and Github (github.com), which are free to use

and facilitate management of communication between team members, documentation, code

management, and bug tracking. We have found that these tools are essential to the learning

outcome improvements because they are more relatable to students who are increasingly expecting

instant feedback communication and the ability to work at any time from any location. Further,

these and similar tools are used in industry, so it is beneficial for students to gain experience with

them.

To assign grades in this course, we use 3 components: quizzes, project work, and a final exam.

Weekly quizzes keep students aligned with course lecture topics. The project work is assessed

through establishment of expectations for a certain amount of effort (hours and LOC) put forth

toward the project. Students are expected to put effort toward every phase (requirements, design,

implementation, testing, and maintenance), and they are required to document their effort in a

digital journal. Students also are required to write a final reflection that describes their

contributions to the project and learning outcomes. The journal and reflection information is

required to be aligned with information posted on Slack, Trello, and the code repository.

4. Project Description

Mobile applications are an excellent project for

students to learn software engineering and SPL

because of their complexity and the natural

inclination of students to be interested in

mobile applications. Further, online resources

are good enough that a lack of initial

experience in mobile development for

instructors and students is not a barrier to

success in the project.

4.1 Domain Description

Fixed-route bus systems exist in most urban

areas in more than 1,200 fixed-route bus

systems in the United States ranging from

hundreds of bus routes to only one route [2].

Prior to the introduction of mobile technology,

fixed-route bus systems relied upon paper

schedules in brochure or poster format to

communicate route information to riders.

Today, most bus systems (approximately 85%)

maintain their own websites where schedules are posted. However, the complexity of the schedule

combined with small screens of mobile devices make it difficult for most people to easily find the

information they want when they are at a bus stop. Many large bus systems have implemented

mobile apps or Google Transit to help riders determine when the next bus is arriving at a given

stop [7], but smaller transit systems often cannot afford the cost or staffing required for these

solutions.

The fact that many students are familiar with buses and transit systems makes this an appealing

project because it is easy to describe the problem and understand the motivation for the

development goals. Also, the need to support multiple platforms (iOS, Android, web) is a realistic

challenge that exposes students to tradeoff decisions that they will face in their future careers as

software engineers. Close interaction with the transit system helped the students see how the

software is used and helped us better define the SPL assets as they were developed.

Figure 1. Screenshot of the iOS version of the TA home

screen for the local transit system.

4.2 Product Architecture

The product we developed for the transit system

consists of several components and is designed to

be easy to update for the transit system. Riders of

the busses can use the Transit Application (TA)

with or without an internet connection. The TA is

deployed natively for Android and iOS and includes

database on the mobile device for offline

functionality. A screenshot of the main page of the

app for the original deployment is shown in Figure

1.

We have attempted to employ the “Product Parts”

SPL pattern to develop the core assets of our

application [9]. The TA application includes three

main functional features and a help page as shown

in Figure 1. The “Scan” feature allows users to scan

a unique QR code at a bus stop to find out when the

next bus is arriving on any of the bus routes that

serve the specific stop. Information on the results

page is provided to the user as a sorted list of stop

times (see Figure 2). The “GPS” feature allows a rider to take the current GPS location of their

phone (using the GPS localization built into the device) and determine the closest stops and when

the busses are arriving at those stops. The “Route” feature utilizes Google Transit to allow a user

to find a route from their current location to a destination location. This tool allows a rider to

determine how to transfer between busses, routes, and other modes of transportation to reach their

destination.

The TA Manager is a web-based tool designed for the transit administrators to keep the routes and

schedules updated on the mobile apps. The TA Manager pushes updates to the TA apps whenever

changes are made to the database to ensure the most accurate data is available. The TA manager

tool keeps an up-to-date version of a database with all the routes and it also allows the transit

managers to import and export the standardized General Transit Feed Specification (GTFS) files,

which are needed to keep Google Transit up-

to-date [7]. The TA Manager can also host

public mobile-friendly websites that provide

similar information for riders who use

Windows, Blackberry, or other mobile

platforms. A diagram of the organization of

the product structure is shown in Figure 3.

TA apps, while disjoint by the different

languages for the different platforms (Java and

Swift), are joined under similar branches of

logic. Hosted on each application is an

instance of a database, which mimics the

GTFS file structure and uses platform-

independent queries. Figure 3. Overall system architecture.

Figure 2. Screenshot of the iOS version of the TA stop

screen that shows the arrival times of the busses.

4.3 SPL Assets

Within the TA Apps, we have identified several components as SPL assets. The four buttons seen

in Figure 1 identify four assets that can be included or excluded as requested by a transit system.

Each of these features (in Android and iOS) is developed to be modular so that they can be easily

modified or eliminated for future deployments. Our SPL approach was adapted with the mindset

of utilizing a Model View Controller (MVC) architectural pattern as closely as possible.

Our approach allows for rapid deployment of applications because only small parts (less than

0.01% of the total LOC) of the application must be rewritten when individual changes happen to

the operating system, user interface, modules, database, or underlying logic. The TA Apps

currently have approximately 30,000 LOC, of which approximately 20 need to be changed for a

redeployment.

The TA Manager has two central objectives: to allow the transit authority’s authorized users the

ability to load transit data onto the system and to translate the data into forms for machine and

human consumption. All data is stored in a database, in which the schema is based on the GTFS

with additional enhancements for specific use-cases that enhance usability for transit system

managers.

The size of the TA Manager is more than 100,000 LOC (some of which are auto-generated or

imported from libraries). To adapt the manager for another system, less than ten LOC need

changing in addition to the database (which is updated automatically using the GTFS files) and

the logos branding the application.

There are many potential future product feature variations that could be included in our SPL for

future sections of the class. We are currently developing a crowdsourced, real-time positioning

tool for the application using Bluetooth beacons that will allow real-time GPS locations of the

busses without using an existing AVL GPS system. The real-time data can be added as a module

to the pre-existing GTFS real-time specification to maintain standardization and easy integration

for the SPL.

Another potential feature that can be included as an SPL asset is advertising. Transit systems often

rely on advertisers to offset costs, so they have existing advertising frameworks, and ad space on

the mobile apps could provide a valuable revenue stream to offset costs of maintaining the

application. The last two future features that are natural SPL assets that could be developed for

transit systems are mobile bus passes and mobile payment systems.

5. SPL agile approach

Agile methods are an efficient development process for developing dynamic software products,

and their use has been gaining popularity, especially in the classroom [15]. Agile methods

encourage emphasis on establishing requirements for a single customer (the product owner), but

SPL development requires an understanding of which assets are useful for other potential

customers, which creates an inherent challenge when developing an SPL in a classroom due to the

lack of domain knowledge [16].

5.1 Scrum SPL Asset Identification

Identifying the core features of the application was relatively straightforward as the product owner

clearly identified them through the traditional Scrum user stories. However, to identify the SPL

core assets, multiple client perspectives is needed. To accomplish this in the classroom

environment, we commissioned a market study (through a collaborating marketing research class)

and identified common features in existing mobile applications to determine the core SPL assets.

We attempted to accomplish these SPL asset discovery tasks within the traditional Scrum

framework, but found that it was easy for the SPL components to be de-prioritized compared to

the needs of the original product owner. We completed the SPL core asset analysis simultaneously

with the Scrum process, and we modified and added to the user stories in the product backlog

identified by our product owner. Our modifications were performed during the “after lunch”

portion of the planning meeting (when the product owner was not involved) to ensure the SPL

modifications were included as user stories and not under-emphasized by the product owner.

While the modification and addition of the user stories adds overhead to the development process

and extra work for the developers, incorporating the changes as part of the Scrum sprints provides

an opportunity to talk about the bigger picture of the development process, which is important for

students to discuss.

5.2 SPL Scrum Variation

Through our experience we propose that the traditional Scrum sprint planning meeting can be

augmented with an additional task: SPL planning. By incorporating SPL planning as well as a

dedicated team member responsible for the SPL, the SPL owner, Scrum can naturally incorporate

the development of an SPL simultaneously with an agile product without adding significant

overhead to the Scrum process.

The SPL owner should have a variety of skill sets and responsibilities, and the SPL owner role can

be added to Scrum master duties or a separate team member could be designated as SPL owner.

This role is best held in the classroom by the professor due to the experience required. The SPL

owner identifies SPL tasks during the planning meeting (the after lunch portion) and makes sure

that the tasks are added to the product backlog and appropriately ranked. The SPL owner also aids

in planning for the sprint backlog and separating tasks into manageable sizes. The SPL owner is

in charge of training and motivating other team members to ensure that the SPL tasks can be

completed.

Traditional Scrum product backlog refinement is accomplished during a product backlog planning

session involving the product owner, Scrum master and development team. We propose that the

SPL owner also be involved in the planning process to identify SPL components to include in the

sprint backlog.

In Figure 4, we show our modified Scrum sprint structure including the backlog artifacts. It can

be seen that SPL user stories are identified during a project planning meeting and added to the

product backlog and sprint backlog.

These stories are not prioritized higher

than the development tasks but are still

included in the sprint. Clear

identification of the SPL tasks and

artifacts allows for better separation of the

core assets from the specialized product.

Inherently, some SPL tasks are comingled

with development tasks (for example,

following a design pattern such as MVC),

so the SPL tasks that are part of

development tasks are incorporated

accordingly into existing user stories as

part of the sprint planning meeting.
Figure 4: Scrum sprint modification to include core

SPL asset development.

5.3 SPL Deployment

The original development took one

semester (four calendar months) with a

class of 20 students to complete using

Scrum without a focus on SPL engineering

or maintainability. Soon after the first

deployment, it was clear that the software

would need to be re-written to fix some

fundamental structural bugs and

incorporate standards if it were going to be

useful for other transit systems. The

software was re-written and redeployed for

the second transit system over the course of

2 months in an independent study with a

team of five students. During this re-write,

we began to employ and refine the

incorporation of the SPL owner into the

Scrum process. The first redeployment of

the apps and manager after the SPL-focused

rewrite resulted in a deployment time that

took less than one day. Subsequent SPL development in future software engineering classes has

reduced the deployment time to under 15 minutes. The progress of the deployment improvement

is shown in Figure 5. It is clear from this improvement that students were able to not only write

more reusable code, but while doing this the quality of the documentation improved and the

students better understood real-world applications of the SPL concepts.

6. Lessons learned

In the process of developing this SPL, we learned many things about designing, deploying, and

maintaining an SPL using Scrum in a classroom environment. We also learned many things about

our original research questions.

6.1 The motivation must be clear

A motivation for the project needs to be established for the team early in any project, and while

users of a product can demonstrate their need, demonstrating the need for SPL engineering doesn’t

usually come from users. Theoretical arguments about software maintainability are difficult to

grasp for students, especially when much of their experience in other classes is developing

software to be turned in and discarded after grading.

We found that attempting a timed deployment of the previous software early in the semester and

discussing the shortcomings is a great motivational tool for students to understand why

incorporating SPL user stories is critical. Students are typically eager to be critical of previous

classes’ code and approach, so it is easy to facilitate this experience to start the semester. Students

often will cite the need for more documentation, which motivates them to create such

documentation and understand its importance from the beginning. Balancing the SPL and new

feature motivations is a challenge for the SPL owner, but this can be adjusted throughout the

semester as the project evolves. Regular deployment tests coupled with user tests keep the

motivation fresh throughout the semester.

Figure 5. Chart of deployment time in days for the apps

and manager for the phases of the project.

.

0.02

0.2

2

20

200

D
a

y
s

to
 d

e
p

lo
y

Deployment time

6.2 Ad-hoc agile methods in the classroom are not likely to lead to re-deployable systems

The initial prototype of a new piece of software is inherently focused on developing features, so

the agile approach of “developing for the demo” can easily lead to code that demonstrates

functionality but is not maintainable. Experienced developers who have a focus on developing

maintainable code can avoid this trap, but new software developers often struggle to balance SPL

development and feature development. Inherently, feature development is prioritized over SPL

assets in Scrum because SPL assets are difficult to “demo” in a traditional sense and are de-

prioritized if they are acknowledged at all.

The traditional response to this challenge of developing demo-able but not maintainable code is to

spend significant effort refactoring a project, or throw out the original project and start from the

beginning. Our approach of incorporating an SPL owner into the project changes the motivation

discussions and leads to more software reuse. We found that mindfulness of SPL and

maintainability by the whole team from the beginning of a project does delay development of

features, but ultimately it saved time not having to re-write or refactor as often. Students initially

were skeptical of the additional costs of SPL engineering, but as they saw the deployment tests,

they appreciated the importance of maintainability more, and many cited it as the most significant

learning outcome of the course.

6.3 Competition is a strong motivator

By continuing a similar project from semester to semester, students were not only exposed to the

good and bad coding of previous teams, but they were also given an opportunity to compete with

their peers. Trying to add features and decrease the deployment time to beat their peers was an

incredibly strong motivator for many students. Having a simple metric such as deployment time

makes the success criteria easy to measure and compare, which further enhances competition.

We observed increased creativity and ownership of the project by using competition as a motivator,

which further improved the learning outcomes and experience of the team. While not all students

are motivated by competition, the agile approach of collective ownership facilitated the

competitive students’ motivation of the non-competitive students.

6.4 Effective tool use is critical

Using tools like Slack, Trello, and GitHub not only mimic what students will be seeing in their

future career, they also reinforce dedication and flexibility of the project. The ability for students

to collaborate remotely and understand the challenges of doing so, especially when the project is

focused on reusability is another major learning outcome of the course. Keeping a watchful eye

on the communication and repository use is an important tool for the instructor to not only identify

students who are struggling, but it also allows an additional mechanism for providing feedback to

students and motivation to contribute fairly to the project.

Students universally appreciated the importance of the tools by the end of the class (as indicated

in a post-course survey), and they demonstrated a mastery of the tools within a few weeks of

starting the course. The tools clearly supported the learning outcomes for the class, and also helped

track metrics supporting accountability.

6.5 Consistency is key for learning maintainability and SPL engineering

The initial deployment of our project relied on individual developers to make their own decisions

regarding the maintenance of the project. This resulted in a fragmented code base that contained

several pieces of the project that were individually maintainable but when combined led to an

integration that was undeployable or unmaintainable for future teams. The inconsistency of

individual approaches can be mitigated through code standardization and experience, but young

developers need careful guidance to develop these skills, and it is difficult to achieve these goals

in a single course.

Consistency and standardization can be established and led by the SPL owner and teams adopt the

philosophies started by good examples. We realized an additional benefit emerges when

developers are actively guided by an experienced SPL owner (who continues with the project from

year to year): the likelihood that the SPL assets will be used in the future is increased. Since

developers are more invested in and familiar with the SPL features, it becomes much easier to

encourage their use in the future (even semester to semester), which can be a major challenge for

traditional SPL approaches. Increasing the likelihood of reuse is possibly the most important

learning outcome of our approach (and therefore the most important answer to our research

questions). While it is natural that a design will stabilize over time, the SPL focus ensures that an

emphasis is placed on reuse, which motivates better design earlier.

6.6 Student learning outcomes do improve using SPL in the classroom

The approach we used to introduce students to SPL concepts resulted in not only more efficiently-

deployable code, but we also saw a dramatic improvement in the quality of documentation created.

While quantitative data on this trend is difficult to gather or draw conclusions from, there are many

qualitative observations that demonstrate the validity of this approach to improve learning

outcomes.

It was observed that students in general took a longer view of the lifespan for the software and

were more mindful to create better comments, clearer documentation, and many were eager to

continue to work on parts of the project even after the course was over once the SPL concepts were

emphasized. Comment percentages increased from the single digits to double digits, and more

students utilized the comments that were written (observed informally). Some of the

documentation and efficiency improvements can be credited to general maturing of the software,

but generally the focus of the discussions students had in planning and review meetings changed

to focus more on long-term goals after the SPL focus was added to the class.

The authors also noticed a clear differentiation in the learning outcomes and ability to apply

theoretical concepts to the project once the SPL concepts were emphasized in the course. Students

not only answered the basic questions about maintainability and testing, but they were able to

apply the concepts more concretely in open-ended questions on quizzes and exams. This led to a

noticeable improvement in grades on these specific assessments over the span of the case study.

7. Conclusions

In this work we presented the development and re-deployment over multiple years of an SPL for

transit systems software in a classroom environment. We also presented our adapted Scrum model

that incorporates changes to the Scrum model to incorporate SPL asset recognition and

development through the SPL Owner. Originally we aimed to understand whether incorporating

SPL into the software engineering courses would improve student learning outcomes related to

maintainability, reliability and reusability. We were also hoping to determine whether the

curricular changes could improve documentation quality and code redeployability.

Ultimately, we found that by following our adapted SPL Scrum approach, subsequent semesters

of students continually improved deployment times by multiple orders of magnitude and increased

code reuse incrementally. Student learning outcomes from course assessment averages (quizzes,

exams) improved, and the standard deviation on in-course assessments decreased, indicating that

more students had a more consistent understanding of the concepts.

One area that we felt could have been better addressed was software testing. With the additions

of the SPL focus, less emphasis was put on formal testing methods, which showed in early sprints.

As with Scrum, our process was adapted over time using the retrospective mechanism, which

helped us address the shortcomings of the approach and tailor it to the specific group of students.

In future offerings, a stronger emphasis to generate automated tests within a formal testing

framework would likely further improve the code quality and improve student productivity.

The vast majority of students cite their project experience in this class as the most important they

had while in college, and the favorability ratings for the project increased in post-course

assessments after the introduction of the SPL. While the example we present in this work has

fortuitous SPL properties that allowed for straightforward identification and deployment of SPL

assets, we feel that our approach could be applied to other applications with positive results,

especially in the classroom environment.

8. References

[1] V. Alves, P. Matos, L. Cole, P. Borba, G. Ramalho, Extracting and Evolving Mobile Games

Product Lines LNCS, Vol 3714, pp 70-81, 2005.

[2] American Public Transit Association 2014. 2014 Public Transportation Fact Book.

Washington D.C.

[3] K. Beck, et al, Manifesto for Agile Software Development, http://agilemanifesto.org, 2001.

[4] D. Riley, Using mobile phone programming to teach Java and advanced programming to

computer scientists. Proceedings of the 43rd annual SIGCSE, 2012.

[5] R. Carbon, M. Lindvall, D. Muthig, P. Costa, Integrating product line engineering and agile

methods: Flexible design up front vs. incremental methods, First International Workshop on

Product Line Engineering, 2006.

[6] Carnegie Mellon Software Engineering Institute, URL:

https://www.sei.cmu.edu/productlines/

[7] M. Catala, S. Dowling, D. Hayward, Expanding the Google Transit Feed Specifications to

Support Operations and Planning, No. FDOT BDK85# 977-15, 2011.

[8] G. Chastek, P. Donohoe, J. McGregor, and D. Muthig, Engineering a Production Method for

a Software Product Line, SPLC, 277-286, 2011.

[9] P. Clements, L. Jones, J. McGregor, L. Northrop, Getting There from Here: a roadmap for

software product line adoption, Comm of the ACM, (49) 12, 33-36, 2006.

[10] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, SEI Ser. In

Soft. Eng. Addison Wesley, 2001.

[11] M Marques, Monitoring: An Intervention to Improve Team Results in Software Engineering

Education, Proceedings of the 47th SIGCSE, 2016.

[12] M. Kircher, P. Hofman, Combining Systematic Reuse with Agile Development- Experience

Report, SPLC, 2012.

[13] A. Martini L. Pareto, J. Bosch, Enablers and Inhibitors for Speed with Reuse, SPLC, 116-

125, 2012.

http://agilemanifesto.org/
https://www.sei.cmu.edu/productlines/

[14] T. Mende, R. Koschke, and F. Beckwermert, An Evaluation of Code Similarity Identification

for the Grow-and-Prune Model, Journal of Software Maintenance and Evolution: Research

and Practice, 21(2):143-169, 2009.

[15] L. Mikael, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich, D. Kiefer, J. May, T.

Kahkonen, Agile Software Dev in Large Organizations, Computing Practices, 37(12), 38-46,

2004.

[16] P. O'Leary,F. McCaffery, S. Thiel, and I. Richardson, An agile process model for product

derivation in software product line engineering. J. Softw. Evol. and Proc., 24: 561–571,

2012.

[17] R. Paige, et al. "Towards an agile process for building software product lines." Extreme

Programming and Agile Processes in Software Engineering. Springer Berlin Heidelberg,

198-199, 2006.

[18] J Hunt, J McGregor, Software Product Lines: A Pedagogical Application, JCSC, 22(2), 2006.

[19] A. Santos, A. Sales, P. Fernandez, M. Nichols, Combining Challenge-Based Learning and

Scrum Framework for Mobile Application Development. ITiCSE, 189-194, 2015.

[20] K. Schwaber, M. Beedle, Agile Software Development with Scrum, Prentice Hall, 2001.

[21] W. Zhang, S. Jarzabek, Reuse without Compromising Performance: Industrial Experience

from RPG Software Product Line for Mobile Devices Lecture Notes in Computer Science,

Vol 3714, pp 57-69, 2005

