
Paper ID #26749

A Case Study of Writing to Learn to Program: Codebook Implementation
and Analysis

Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University

Dr. Jean Mohammadi-Aragh is an assistant professor in the Department of Electrical and Computer Engi-
neering at Mississippi State University. Dr. Mohammadi-Aragh investigates the use of digital systems to
measure and support engineering education, specifically through learning analytics and the pedagogical
uses of digital systems. She also investigates fundamental questions critical to improving undergraduate
engineering degree pathways. . She earned her Ph.D. in Engineering Education from Virginia Tech. In
2013, Dr. Mohammadi-Aragh was honored as a promising new engineering education researcher when
she was selected as an ASEE Educational Research and Methods Division Apprentice Faculty.

Ms. Phyllis Beck, Mississippi State University
Ms. Amy K. Barton, Mississippi State University

Amy Barton is Technical Writing Instructor in the Shackouls Technical Communication Program at Mis-
sissippi State University. In 2013, she was inducted into the Academy of Distinguished Teachers for
the Bagley College of Engineering. She is an active member of the Southeastern Section of ASEE. Her
research focuses on incorporating writing to learn strategies into courses across the curriculum.

Dr. Bryan A. Jones, Mississippi State University

Bryan A. Jones received the B.S.E.E. and M.S. degrees in electrical engineering from Rice University,
Houston, TX, in 1995 and 2002, respectively, and the Ph.D. degree in electrical engineering from Clemson
University, Clemson, SC, in 2005. He is currently an Associate Professor at Mississippi State University,
Mississippi State, MS.

From 1996 to 2000, he was a Hardware Design Engineer with Compaq, where he specialized in board lay-
out for high-availability redundant array of independent disks (RAID) controllers. His research interests
include engineering education, robotics, and literate programming.

c©American Society for Engineering Education, 2019

A Case Study of Writing to Learn to Program:
 Codebook Implementation and Analysis

1. Introduction

In this research paper, we explore the application of our qualitative codebook by conducting a
comparative investigation of three exemplar introductory programming lab submissions. We
selected three lab samples from an introductory programming course in python for the
comparison. Each lab submission was chosen to showcase a variety of thinking processes and
organizational strategies to assist in illustrating the reasoning behind our qualitative coding
methods. The solutions presented come from a single assignment across three different sections
in the same semester. This was to make clear the patterns presented and to demonstrate the
amount of diversity that can be displayed within the context of a single assignment. It is
important to note that we are not analyzing the assignment solutions for correctness but only
looking at the thinking and organizational strategies used at this time.

2. Theoretical Foundations based in Writing to Learn

Learning to program is a complex process that could benefit from Writing to Learn (WTL)
strategies. The struggles of novice programmers is well documented [1]. A commonly cited
factor is “fragile knowledge,” which is knowledge that is incomplete and superficial [2].
Students who effectively employ metacognitive strategies, such as reflection and self-
assessment, are more likely to master the problem solving skills that are essential to
programming success [3]. WTL strategies can promote deeper understanding in any discipline.
By making thinking and organization visible, these short, low-stakes writing activities support
metacognition. Through reflecting on their thinking processes, learners can recognize what and
how they are learning [4]. In the programming process, writing intermingled with coding allows
students to reflect in real-time about the choices they are making and the reasons for those
choices [5,6]. Just as importantly, examining novice programmers’ source code comments can
provide insight into their thinking processes as they approach a lab assignment.

3. Conceptual Framework

To investigate intermingled writing and coding, we previously modified lab assignment
instructions in some sections (i.e., WTL sections) of an introductory programming course and
used the traditional, unmodified assignment in the remaining sections (i.e., TRAD sections). The
modified assignments incorporated WTL strategies and placed an emphasis on writing during the
programming process. We used programming submissions from both the WTL and TRAD
sections to develop a qualitative code book for analyzing students’ Thinking Processes and
Visual Organization Strategies. We briefly define Thinking Processes and Visual Organization

Strategies in this section, but refer the reader to our previous publications [7,8] for additional
details.

3.1 Overview of Thinking Processes
One of our main objectives with WTL is to improve students’ problem-solving capacities by
moving their focus from procedural knowledge to conceptual and strategic knowledge [9].
Thinking Processes reflect a student’s level of strategic knowledge and metacognition. We
developed Thinking Processes to give us a method for analyzing the level of reasoning at which
students are currently performing when designing and writing a programming solution. Our

initial analysis of 172 students’ lab assignments
has resulted in the development of five major
categories of Thinking Processes: literal,
conceptual, reflective, organizational,
insufficient and none. A brief definition of each
class is outlined in Table 1.

3.2 Overview of Organizational Strategies
Organizational Strategies allow us to answer the
question of how a student utilizes their writing
and comments to visually structure their code.
We take into consideration various
characteristics such as the use of white-space,
commenting patterns and the size of continuous
code segments, which we refer to as units, to
gain an understanding of how students visually
communicate their ideas and design process
through the structure of their code. Large units
that contain multiple ideas and could benefit
from being broken down into smaller units of
organization are blocks. Organizational
strategies are broken down into five classes:
Every-line, Unitization, Block-level, Insufficient
and None. We have outlined our definitions of
these classes in Table 2. To see more examples
and to read a more detailed explanation of
thinking processes and visual organization we
refer you to our previous work [8].

4. Case Study: Three Programming Assignment Submissions

The lab assignment we selected for analysis was a two-week pair programmed lab assignment
where each group comprised two students. Students were given a set of images and a module
that contained an image comparison algorithm and a set of functions to assist them with the task.
The goal of the assignment was for the code to prompt the user for the image that best represents
the person they are looking for and then to conduct a search that compares the selected image
with all other images and return the best match. This was the sixth lab out of ten for the semester,
and at this time the students were not expected to utilize functions. The overall programming
objectives for this lab were to practice repetition structures, branching, and indexing into lists.
For purposes of analysis, all header information has been removed from the Traditional labs, and
all header info, test cases, and discussion questions have been removed from the WTL labs in
order to focus solely on the source code.

To analyze and demonstrate the application of our codebook, we examine three cases, Case A:
Block-level, Case B: Unitization, and Case C: Every-line. We used the visual organization
classification to distinguish between each case because, currently, each lab submission can only
be assigned a single class within this category. We have chosen not to include Insufficient or
None, as those visual organization classifications are determined by the absence of writing and
are self-evident in terms of analysis.

We classify every lab submission in two phases. In the first phase we determine Visual
Organization strategy. First, we identify all the comments in a file. Then, we examine the visual
pattern created by the placement of comments within the source code to determine a visual
organization strategy. As part of previous research efforts [10] a set of features, which is
summarized in Table 3, was developed to help support Visual Organization classification. Each
visual organization strategy has a set of distinct properties that is illustrated with these features
and support a given classification. Specifically, we use the Number of Units in a file and the
Ratio of Comments to Code to provide strong supporting evidence. To see an overview of the
ratio of comments to code for each lab, see Fig. 1. In the second classification phase, we
consider each comment in conjunction with the source code that follows it in order to assign a
classification. We can see a comparison of the number and type of comment classifications made
for each lab submission in Fig. 2. In the remainder of this section, we examine our classification
techniques in more detail.

Summary of Lab Features

Lab WL6_S5_G6 TL6_S7_G
6

TL6_S9_G5

Organization Strategy Every-line Unitization Block-level

Total Lines in File 42 29 27

Number of Comments Lines 19 (45.23%) 9
(31.03%)

4 (14.81%)

Number of Code Lines 23 (54.75%) 20
(68.97%)

23 (85.19%)

Ratio of Comments to Code 0.8261 0.45 0.17

Number of Units 19 9 3

Ratio of Units to Lines 0.45 0.31 0.111

Table 3: Summary of Lab Features

Figure 1: Illustration of the relationship between comments and code for each lab sample.

4.2 Case A: Block-level
For Case A we will examine a lab that has been classified as Block-Level. As seen in Fig. 3, each
comment has been highlighted and classified with a color-coded tag and assigned a label on the
left for ease of reference. Each unit has been identified and assigned a number on the right.

First, we will analyze the Organizational Strategy. An initial pass through the source code of lab
TL6_S9_G5 tells us that comments and whitespace have been used sparingly and we can identify
large units of code that follow a 1-2 line comment. Analyzing each of these units individually,
we observe that all the source code in one unit does not directly relate to the comment. For
example, unit 2 line 12 contains an “append” command, which is not clearly related to the
comment in line 9 “#load images”. Thus, these units are blocks. With regards to our metrics,
there is a low comment to code ratio of 0.17 and the lab consists of 14.81% comments and
85.19% code. This submission is the most concise solution of the three cases at 27 lines, not
including white-space. When comparing the number of units to the total lines in the file we get a
very low ratio of 0.11. Consistent with Block-level properties, we observe a low comment to
code ratio, a small number of units, and a low unit to total lines ratio. All of these metrics are
much smaller in comparison to Unitization or Every-line strategies resulting in a firm
classification of Block-level organization.
Next, we consider Thinking Processes by analyzing each source code comment. The
classification of comments resulted in 1- reflective and 3 - insufficient as illustrated in Fig. 3.
Comment a is reflective, while fairly short for a reflective comment, it provides the reason for

Figure 2: Visualization of the number and type of comments in each sample

and states the overall goal of the program providing insight into the function of the code. It
illustrates the question of why without providing implementation details. Comments b, c, and d
are all classified as insufficient. Each of these comments on their own adds little value to the
understanding of the code and are too short to be assigned a more specific classification. It is
possible that comments b and c could be considered organizational, but due to the length and a
lack of consistency in the organizational strategy we lack sufficient evidence to warrant a more
complex classification.

4.3 Case B: Unitization
For Case B be we will illustrate the properties of Unitization combined with a variety of
commenting types. Fig. 4 provides a visual overview of how we classified each comment of lab
TL6_S7_G6 and how the code breaks down into individual units. When analyzing the
Organizational Strategy, an initial pass through the code conveys a strong sense of clear
consistent commenting and use of white space to organize code into logical groupings that form
easily distinguishable units. We have a nine distinct units and a total of 29 lines, not including
white-space where each unit consists of a single comment followed by one or more source code
statements where the minimum is one line and the maximum is four lines of code. The ratio of
comments to code is closer to 2:1 at 0.45 with 31.03% comments and 68.97% code. Comparing
the number of units to the total number of lines results in a value of 0.31. Here we can see that
we have more units and more comments than in the Block-level strategy and fewer units and
fewer overall comments than that of an Every-line organizational strategy, which we will look at

Figure 3: Case Study A: Block-level. Source code for Lab Sample TL6_S9_G5.

in the third case. The units are larger than Every-line units but too small to be considered Block-
level units because most units would not benefit from being broken down into smaller units. That
is to say, it would not increase the clarity or organizational structure of the program. Combined
these properties lead us to a clear classification of Unitization.

To analyze Thinking Processes we have classified each of the comments in the source code
resulting in 4 - Conceptual, 2 - Reflective, 2 - Literal and 1 - Insufficient as seen in Fig. 4.
Comments a, b, d, and i are Conceptual. When deciding if a comment is conceptual, a clear way

to do so is to ask if it answers How? or What? (e.g., “If the student states they are making a
variable or calling a function, does it say what the purpose is?”). For example, if we look at a, it
tells us what they need to import the image_compare module for importing pictures. In comment
b, they give us a summary of what they intend to do in the next few lines of code. They don’t

Figure 4: Case Study B: Unitization. Source code for Lab Sample TL6_S7_G6.

reflect on what the list_images() function does and the only information we can gather is that it is
a list but it is enough information to prevent it from being a literal comment. We don’t know
what form the image data is in. We also don’t know the purpose of calculating the length and
how it will be used later in the program. Comment b, like many conceptual comments, is
immediate, reflecting only on this single moment in the code and does not provide details on
how the code relates to previous or future decisions. Comment d tells us what they are asking the
user for, it provides more information than what is in the initial input prompt by stating that it is
an index but they do not tell us why they need the index from the user. If they did then we could
consider this to be reflective. The last conceptual comment is i which helps us understand what
the show_images function does. The function is self-documenting but we want to maintain a
naive point of view and refrain from making any assumption about what the code does. From
this comment, we can gather that they will display the initial image they were matching against
and the resulting match that was returned from their search.

Comments e and g are reflective. When analyzing reflective comments it can be challenging to
determine when a comment goes from being conceptual to reflective, often it is the difference
between a few keywords. There are also times when the first part of a comment will be
conceptual or literal but they add additional commentary to the end that indicates their internal
reasoning. If we look at comment e, the programmer is trying to tell us why they need to print
the index and that this is the name and the index of the image that is being searched for, helping
us to understand why they need to output the index. This is in contrast to the above comment d if
e was only ‘tell the user the index’ it would have been conceptual as it would tell us what is
being done but not why. Comment g has a similar structure where the first half “Get the highest
decimal number” tells us what is going to happen in the code and the second half “so it can get
the lost picture” tells us why they need to. Often when we see ‘so’ as a conjunction in a comment
it is a strong indicator that they are going to give a reason why shifting the comment from
conceptual to reflective.

Finally, we have the literal comments c and h and the insufficient comment f. Comment c
provides little information and does not tell us why or what the list will be for. It can be seen as
an English restatement of creating an empty list in python. Comment h simply parrots the print
statement below it and can be seen as unnecessary as it provides no additional insight. Comment
f is insufficient because it has a vague and casual tone and provides little to no clarity on the
purpose of the code below it. If f was “looping through all the pictures” it would be literal. If f
was “searching through all the pictures, it could be considered conceptual. However, since the
provided comment uses language that is not specific enough to warrant a more complex
classification, the result is an insufficient classification.

4.4 Case C: Every-line

For Case C we will analyze the properties of an Every-line Organizational Strategy. Fig. 5
provides a visual overview of how we classified each comment of lab WL6_S5_G6 and how the
code breaks down into individual units. Upon initial inspection, we observe that there is a
consistent pattern where, for a majority of units, a single line of code follows a single comment.
Lab WL6_S5_G6 exhibits strong Every-line Characteristics in which the number of lines of code
and the number of lines of comments are balanced and exhibit a code to comment ratio of .82
with comments preceding 19 out of 23 lines of code. This is consistent with our prior work
indicating that the ratio of comments to code in an Every-line style organization is close to 1.
Additionally, there is little to no separation of code into larger logical units; equal spacing is used
throughout the program. The only grouping of concepts comes in the form of programming
structures such as for-loops and if-statements. There are no comments indicating organization,
and all comments are short single-line comments. All these metrics are consistent with an Every-
line visual organization classification.

Considering thinking processes, the classification of comments resulted in 14 - conceptual, 4 -
literal and 1- insufficient. The conceptual comments are b, d - f, j, and l - r. These comments all
explain the function of the code without simply restating the code. For example, comment n uses
the word “loops”, an indication that it could be a literal restatement of code, but the comment
continues to explain that the source code is “comparing to find the highest comparison and its
index”, which provides additional insight into the source code functionality that is not simply a
restatement.

The literal comments are a, c, i and s. a and c are a plain English restatement, and i borders
between literal and conceptual as the comment has two parts. First, they state that they are
‘looping’ which is literal and then they state ‘adds all comparisons’, which could be conceptual,

Figure 5: Case Study C: Every-line. Source code for Lab Sample WL6_S5_G6.

except that it does not add to the understanding of the code. Instead the statement creates more
questions for the reviewer (e.g., Are we adding values or appending items? and What are we
comparing?). By reviewing the code, we can see they are appending the results from the
comparison for each image to a list, but this is not clear from the comment. The final literal
comment s is a restatement of the function name and provides no additional description. In a
way, the comment is unwarranted as the function itself is self-documenting, but we can see that
the student still felt they needed to place a comment above it, which is consistent with the Every-
line pattern that is often characterized by over commenting.

Line k is classified as insufficient because the comment provides no meaningful information and
is almost nonsensical, which could indicate the student’s misunderstanding of what is actually
happening in the code. While most insufficient comments tend to be those that are too short,
there are cases of longer comments that still do not provide any meaningful information.

4. Conclusions and Future Work

In this paper, we have demonstrated the application of our qualitative codebook and how it can
be utilized to analyze introductory students’ source code and comments. Our case study looked
at three source code samples from an introductory programming lab assignment where we
identified and analyzed a diverse set of patterns that illustrate the Thinking Processes and
Organizational Strategies of introductory programming students. This case study demonstrates
that student programming assignments contain distinct patterns with recognizable characteristics
that can be identified and used to understand as students’ metacognition and design processes.
Being able to identify the patterns displayed by successful students versus struggling students
will 1) give us a toolset to better guide students in how to self-assess and monitor their own
learning progress, and 2) help educators understand how writing and visual organization impacts
a student’s thinking, problem solving, and design process.

Our qualitative codebook contains definitions and examples to assist our qualitative coding team
with determining the appropriate classification. When analyzing source code writing it may not
always be clear what the correct classification should be. We have included an “unable to
classify category” of Insufficient for those cases. The validity of our work is strengthened by
ensuring that there is clear consistent reasoning for assigning a given classification.

Now that the codebook has been formalized and we are beginning the process of coding our
entire dataset, we anticipate there will be modifications and clarifications to the codebook.
Further classification categories may be warranted and we are open to starting a discourse on this
topic. Additionally, we are aware that the classification of Visual Organization is restricted to a
single classification but portions of the code may exhibit multiple organizational characteristics.
We are developing methods for analyzing units on a more granular level that allow for multiple

organizational styles to exist within a single file. While the labs presented in this paper do have a
single organizational strategy, there are a variety of cases such as Unitization being used as the
primary organizational structure but demonstrate Every-line strategies inside various
programming structures such as functions. We are investigating ways to indicate these sub-
organizational strategies on a unit by unit basis.

Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. DUE-
1612132. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] Watson, Christopher, and Frederick WB Li. "Failure rates in introductory programming

revisited." Proceedings of the 2014 conference on Innovation & technology in computer
science education. ACM, 2014.

[2] Perkins, David, and Fay Martin. "Fragile Knowledge and Neglected Strategies in Novice
Programmers. IR85-22." (1985).

[3] Bergin, Susan, Ronan Reilly, and Desmond Traynor. "Examining the role of self-regulated
learning on introductory programming performance." Proceedings of the first international
workshop on Computing education research. ACM, 2005.

[4] Emig, Janet. "Writing as a mode of learning." College composition and communication 28.2
(1977): 122-128.

[5] Knuth, Donald Ervin. "Literate programming." The Computer Journal 27.2 (1984): 97-111.
[6] Jones, B.A., Mohammadi-Aragh, M.J., Barton, A.K., Reese, D., & Pan, H. (2015). Writing-

to-Learn-to-Program: Examining the need for a new genre in programming pedagogy.
122nd ASEE Annual Conference and Exposition, Seattle, Washington.

[7] Mohammadi-Aragh, M.J., Beck, P.J., Barton, A.K., Reese, D., Jones, B.A., Jankun-Kelly, M
(2018). Coding the coders: A qualitative investigation of students’ commenting patterns.
American Society for Engineering Education Annual Conference and Exposition.

[8] Mohammadi-Aragh, M. J., Beck, P. J., Barton, A. K., Reese, D. S., Jones, B. A., Jankun-
Kelly, M. (2018). Coding the Coders: Creating a Qualitative Codebook for Students’
Commenting Patterns. SIGCSE '18: The 49th ACM Technical Symposium on Computing
Science Education Proceedings. Baltimore, MD.

[9] McGill, Tanya J., and Simone E. Volet. "A conceptual framework for analyzing students’
knowledge of programming." Journal of research on Computing in Education 29.3 (1997):
276-297.

[10] Beck, P.J., Mohammadi-Aragh, M.J., Archibald, C., Jones, B.A., and Barton, A. (2018).
Real-time Metacognitive Feedback for Introductory Programming Using Machine Learning.
IEEE Frontiers in Education (FIE).

