
  Session 1520 

 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 

A Change in Approach to Engineering Computing for Freshmen 
 – Similar Directions at Three Dissimilar Institutions 

 
 

David E. Clough, Steven C. Chapra, and Gary S. Huvard 
University of Colorado / Tufts University / Virginia Commonwealth University 

 
 
 
 
Abstract 
 
Introductory computing courses for engineering students at Tufts University, the University of 
Colorado, and Virginia Commonwealth University (VCU) have undergone revision and 
development over the past year.  Although the scope of these courses differs among the three 
institutions, similar threadlines have emerged.  These include emphases on engineering problem 
solving, elementary numerical methods, and algorithmic programming.  Software vehicles 
include Mathcad, Matlab, and, in particular, Excel and its VBA programming language.  Use of a 
traditional, stand-alone programming language, such as Fortran or C/C++, is postponed beyond 
these introductory courses.  There are strong, relevant pedagogical and practical bases for this 
common approach and results from initial course offerings are most promising. 
 
Background 
 
The teaching of introductory computing at the freshman level has long been fraught with 
controversy and emotion, possibly far more than deserved.  Those most opinionated are often the 
most out of touch:  they don’t do much computing themselves; they are isolated from the day-to-
day computing activities of engineering professionals; and/or they are unfamiliar with the 
teaching of 17-year-olds just out of high school.  A rational approach to introductory computing 
is based on the real needs of students and professionals.  These should be assessed through 
survey, study and evaluation, and then used as the basis for curriculum design.  We believe we 
have done this. 
 
There have been tendencies across the US to go in one of two directions when it comes to 
introductory computing for engineering students: 
 
1) The "tools" approach.  Here, the focus is on the built-in capabilities of a number of software 

packages.  Students solve a variety of engineering problems within the confines of the 
software’s menu options.  The features of the software define the scope of the problem 
solving.  Engineering faculty usually teach this course. 

 
2) The "CS101" approach.  This is an introductory course in computer programming, most often 

taught as a service course by the computer science department.  From the late 60’s to the 
early 90’s, Fortran was usually the language of choice for engineering students, although 
Pascal was used for a number of years.  The current trend for this course is to use the C/C++ 
language as a vehicle, a choice apparently driven by the GUI requirements of personal P

age 6.9.1



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

computer applications.  The fundamentals of programming are emphasized at the expense of 
engineering problem solving.  Most engineering students never again write a C/C++ program 
after the course is completed. 

 
Common basis and rationale for the new courses 
 
Our approach is middle-of-the-road when compared to the above.  We focus on engineering 
problem solving: 
 
½ interpretation of the problem statement 
½ design of the solution strategy 
½ getting the results, usually numerical 
½ interpretation and checking of the results 
½ display and documentation 

 
Yet we retain the teaching of programming fundamentals: 
 
½ data structure 
½ algorithm structure 
½ modular design 

 
And we require that students both develop skills and attain knowledge in these areas. 
 
The vehicles we use are software packages that are extensible through programming: 
 
½ Microsoft Excel 2000 with Visual Basic for Applications (VBA) 
½ Mathcad 2000 
½ Matlab 6 

 
We teach programming fundamentals with VBA as a natural extension of Excel’s problem-
solving environment.  Since VBA is a fully-featured language, including object-oriented 
capabilities, it provides an excellent environment for knowledge development in programming, 
knowledge that is portable to other environments, first to Mathcad and Matlab, and later to other 
free-standing languages, such as C/C++ and Fortran.  Also, there is a high degree of computer 
ownership among our students, and Excel/VBA is already installed on virtually all of these 
machines.  There are low-cost student versions of Mathcad and Matlab, and our instructional labs 
have both installed. 
 
Our students continue to use these tools in their subsequent courses in engineering and science.  
Thereby, they have the possibility to maintain their programming knowledge, something that was 
missing from earlier approaches using programming languages, such as Fortran and C/C++.  We 
want to avoid the "soon forgotten" syndrome.  And, through knowledge of programming, 
students are able to extend the capabilities of the software packages.  In being able to do so, they 
differentiate themselves from other students and professionals who are limited to using built-in 
features.  From a broader viewpoint, we recognize the discipline of computer programming for 
its intellectual content.  This transcends immediate utility and the development of specific skills.  P

age 6.9.2



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

The knowledge embodied in structured programming is of fundamental value to engineers and 
scientists and provides value in innumerable and unseen ways. 
 
We recognize that, in today’s computing world, a freshman introductory course can only lay a 
foundation and open doors.  We expect that those of our students who have a strong interest in 
computing will take additional courses in computer science, programming, numerical methods 
and computer engineering.  And students who have had our similar courses in the past enjoy 
more success in these following courses than those who have not.  But, at the same time, we 
believe that a well-engineered, effective introductory course sets the right direction early on for 
all students.  And, given the level of preparation of our entering students in problem solving, the 
experience provided by our course is essential to survival in engineering. 
 
Our instructional m.o. has been to decrease the amount of time spent in the traditional classroom 
lecture setting and increase hands-on time in the computer laboratory with expert coaches nearby 
to help.  These coaches are most often undergraduate assistants who were successful in the 
course earlier and have excellent mentoring talents. 
 
Settings for the courses 
 
Tufts University:  Introduction to Computers in Engineering  [ EN-1 ] 
 
Steve Chapra developed and taught this course first in the Fall 1999 semester.  It is a 
1-1/2-credit-hour course, and thus must be more limited in scope than a standard 3-credit-hour 
course.  This course is taught in a single section to all engineering and computer science 
freshmen at Tufts, about 250 students each fall semester.  Lab sections are about 20 students 
each. 
 
After an introduction to computer systems, email and the Internet, there is a brief segment on 
spreadsheet problem solving with Excel.  The bulk of the course teaches programming 
fundamentals using Excel and VBA.  Students develop a major Excel/VBA project and make a 
PowerPoint-based presentation that is videotaped and critiqued. 
 
The contact time allocated to the course does not allow for inclusion of other software packages, 
such as Mathcad or Matlab. 
 
University of Colorado:  Introduction to Engineering Computing  [ GEEN 1300 ] 
 
This 3-credit-hour course has been taught at Colorado since 1986 to all engineering students, 
except EE’s.  It is not taught to computer science students.  The course was based on the Fortran 
language with some content covering Excel and Matlab, but Dave Clough revised the course for 
the Fall 2000 semester to use VBA instead of Fortran.  It is taught to about 250 students each 
academic year in sections of 75.  Lab sections are about 18 students each. 
 
 
 

P
age 6.9.3



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

The course begins with a 4-week segment on engineering problem solving with Mathcad as the 
software vehicle.  This is followed by a 4-week segment on spreadsheet problem solving with 
Excel.  Programming fundamentals are then taught in a 4-week segment using Excel and VBA.  
In a final 4-week segment, vector/matrix calculations are introduced using Matlab, and the 
programming techniques learned in VBA are ported to Matlab’s m-script language.  Elementary 
numerical methods introduced include root finding, fixed-point iteration, curve fitting, and 
Gaussian elimination. 
 
Virginia Commonwealth University:  Computer Methods in Engineering  [ ENGR 115 ] 
 
This introductory course is the first element in a school-wide initiative to teach all engineering 
students a consistent set of fundamental computing skills. This 1-credit-hour course will be 
piloted by Gary Huvard with chemical engineering freshmen in bi-weekly, 1.5-hour meetings in 
a computer classroom in Spring 2001 and implemented for all engineering freshmen in Spring 
2002.  Problem selection will be integrated with a concurrent course on statics and strength of 
materials. 
 
The course plan includes 2 weeks on Web page creation using HTML.  This is followed by the 
major, 10-week segment on Excel and VBA.  Of this, five weeks will be devoted to writing VBA 
functions and subroutines.  A final 3-week segment introduces the use of Kaleidagraph for data 
analysis and the creation of publication quality graphs. 
 
For chemical engineers, the freshman course will set the stage for teaching advanced problem-
solving and programming skills using Excel, VBA, and Mathcad in the sophomore mass and 
energy balances course and beyond.  Mechanical and Electrical Engineering will introduce 
advanced skills using Mathcad and Matlab, respectively, through the sophomore and junior year.  
Computer Science courses on programming languages (C/C++, Fortran etc.) will be encouraged 
as technical electives and simulation software is taught later in the curriculum as well.  However, 
the emphasis will be to reinforce skills first learned in the freshman year through continued use, 
in all courses, of a consistent set of computing and programming tools through all four years of 
the curriculum.  VCU has purposely chosen the software packages that they feel most students 
will continue to use after graduating to industrial positions. 
 
Pedagogical approach – an example 
 
The combination of Excel and its companion programming language provides an excellent 
setting for the teaching of elementary numerical methods and programming fundamentals.  
Students can prototype a numerical method, such as bisection root finding, on an Excel 
spreadsheet.  In this way, the algorithm and its results are spread out in front of the student via 
the live spreadsheet calculations.  See Figure 1 below.  In this example, the depth of liquid in a 
spherical tank is solved, given the liquid volume and the inside radius of the tank.  The actual 
equation solved is 
 ( ) 3 2f h h 3Rh 3V π= − +  

where h : liquid level, m 
 R : tank inside radius, m 
 V : liquid volume, m3 P

age 6.9.4



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

 Figure 1.  Bisection 
  spreadsheet 

 
All formulas are live and bisection algorithm decisions are implemented with Excel’s IF 
functions.  The formulas in cells B12 and D12 represent the decisional basis of the algorithm: 
 
 B12: =IF(C11*G11>0,F11,B11) 
 D12: =IF(E11*G11>0,F11,D11) 

 
and the simple numerical method is shown by the midpoint formula in cell F11: 
 
 F11: =(B11+D11)/2 

 
Although illustrative and educational, the spreadsheet solution is limited.  The number of 
iterations is arbitrary, and there is no convergence control.  Also, it is awkward to convert the 
method for solution of another equation.  However, with this prototype built on the Excel 
spreadsheet, the student is ready to elevate the application into the form of a user-defined 
function in VBA.  This is illustrated in Figure 2 below. 
 
The user-defined function Bisect is conveniently implemented in one formula on the spreadsheet.  
The function is re-entrant and can be invoked from multiple locations on the spreadsheet.  This 
example includes checking of initial guesses and convergence control.  Iteration limits can be 
added easily. 
 

P
age 6.9.5



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

In the Colorado course, given an illustrative example like this, students then develop similar 
spreadsheet prototype Å VBA function applications, such as Newton’s method, false position, 
Golden Section search, and the Wegstein method. 
 

  
 
Figure 2.  Bisect user-defined function in VBA and as implemented on Excel spreadsheet 
 
We have found that the VBA language provides an excellent setting for the teaching of algorithm 
and data structure.  Its algorithm structure is on a par with that of Fortran 90/95 and superior to 
that of C/C++ and Matlab, especially in the case of loops.  The VBA language is more explicit 
and verbose than C/C++ and, consequently, less intimidating to students with no background in 
programming.  Students also must make use of objects, properties and methods in VBA in order 
to communicate with the spreadsheet; so, they are introduced to object-oriented programming. 
 
For those students interested in building their programming and software engineering expertise, 
these introductory courses based on VBA provide a helpful stepping stone to subsequent courses 
in computer science that improves the students’ chances for success and learning in these latter 
courses. 
 
Student reaction 
 
Since the Tufts course has been taught twice, the Colorado course only once, and the VCU 
course is about to be offered, student feedback does not have a long track record. 
 
Based on exit surveys of students at Colorado at the end of the Fall 2000 semester, we make the 
following observations: P

age 6.9.6



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

½ Students preferred Excel/VBA over Mathcad and Matlab.  Mathcad finished a distant 2nd 
with Matlab close behind. 

½ In Mathcad, students liked the presentation of equations, symbolic operations, and 
explicit handling of units.  They did not like the finicky editing and the graphics. 

½ In Excel/VBA, students liked the logical layout of the spreadsheet with everything 
organized and the results visible.  Reviews on programming with VBA were mixed but 
tilted to the positive.  Some thought that VBA could get more complicated than they 
would like.  Students wished that Excel had symbolic capabilities. 

½ As for Matlab, students liked the vector/matrix capabilities, although they realized that 
much of this power was beyond their appreciation.  Students disliked the Matlab syntax 
that includes "dots" for array operations.  They strongly disliked the Matlab command 
window interface, considering it primitive when compared to Mathcad and Excel.  They 
really liked Matlab’s 3D plotting capabilities.  They disliked Matlab’s C-like loop 
structures, seeing them as inferior to those of VBA. 

½ Over 80% of the students used Excel/VBA in one or more other courses during the same 
semester of the computing course.  About 40% of the students used Mathcad in another 
course.  Only about 10% of the students used Matlab outside of the computing course.  
Such use was generally spontaneous and not required in these other courses.  Students 
appreciated the immediate impact of their learning. 

½ In comparison to their other freshman-level courses (calculus, chemistry, physics, etc.), 
students felt strongly that they learned significantly more in the computing course. 

 
Text materials 
 
Since the courses at Tufts, Colorado and VCU represent a non-traditional approach to 
introductory computing, there is a natural scarcity of text and support materials.  Steve Chapra at 
Tufts used his own draft manuscript of a text on VBA programming1 and several chapters of 
Clough’s draft manuscript of a text on Excel problem solving2.   
 
Dave Clough at Colorado used a McGraw-Hill custom text with excerpts from books on 
engineering problem solving4, Mathcad7 and Matlab6, along with the abovementioned Excel 
chapters2.  The so-called "VBA for Dummies"∗ text by Walkenbach8 was used for background on 
VBA programming. 
 
Gary Huvard will begin with Gottfried5 (Excel), Walkenbach8 (VBA), and supply materials for 
segments on web-page design and Kaleidagraph.  He expects to supplement these with examples 
and problems from Clough2, from Duncan and Reimer3, and the text used for the freshman 
statics course at VCU. 
 
We expect that the quality and availability of text and support materials for these courses will 
improve greatly in the coming year.  The authors will make available their own instructional 
materials to interested parties upon request. 
 
 

                                                 
∗ The "Dummies" part of the title is definitely misleading.  This user-friendly book contains a significant amount of 
material on programming fundamentals in VBA. 

P
age 6.9.7



 Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright 2001, American Society for Engineering Education 
 

Where from here? 
 
This effort is still at a fledgling stage.  Initial feedback from students is a marked improvement 
from that during earlier, more traditional approaches to engineering computing.  Their level of 
motivation and excitement is higher, and this is fueled by their perception of the immediate 
utility of the course topic material.  They are using what they learn in other courses in the same 
semester.  Although time will be the judge of our mid-term and long-term hypotheses, 
assessment by our upper-division students and alumni indicate that we are on the right track. 
 
 
 
 
Bibliography 
1. Chapra, S.C., Excel 2000 With Visual Basic For Applications For Engineers , draft manuscript. 
2. Clough, D.E., Spreadsheet Problem-solving for Engineers & Scientists Using Excel 2000 , draft manuscript. 
3. Duncan, M. A. and Reimer, J. A., Chemical Engineering Design and Analysis: An Introduction, Cambridge 

University Press, 1998. 
4. Eide, A.R., et al., Engineering Fundamentals and Problem Solving, 3/e , selected chapters, 100 pp., McGraw-

Hill, 1997. 
5. Gottfried, B.S., Spreadsheet Tools for Engineers: Excel 2000 Version, McGraw-Hill, 2000. 
6. Palm, W.J., Introduction to Matlab for Engineers , selected chapters, 232 pp., McGraw-Hill, 1999. 
7. Pritchard, P.J., Mathcad: A Tool for Engineering Problem Solving , selected chapters, 166 pp., McGraw-Hill, 

1999. 
8. Walkenbach, J., Excel 2000 Programming for Dummies, IDG Books, 1999. 
 
 
 
 
DAVID E. CLOUGH 
Dave Clough is Professor of Chemical Engineering at the University of Colorado and has been on the faculty there 
since 1975.  His research interests are centered on the optimization and control of chemical processes.  He teaches 
process control, applied statistics, and introductory computing.  He lives in a log home in the Rocky Mtns.   
Email:  David.Clough@Colorado.edu 
 
STEVEN C. CHAPRA 
Steve Chapra holds the Lewis Berger Chair for Engineering Computing in Civil and Environmental Engineering at 
Tufts.  His research interests are surface water quality modeling, numerical methods and  computer applications in 
environmental engineering.  He teaches in these areas and introductory computing.  He was drawn to environmental 
modeling by his love of the outdoors and fascination with computers.  Email:  Steven.Chapra@Tufts.edu 
 
GARY S. HUVARD 
Gary S. Huvard is Associate Professor and Assistant Chair of Chemical Engineering at Virginia Commonwealth 
University.  He joined the VCU faculty in 1999 after 11 years in positions with BFGoodrich and duPont and 10 
years in private practice.  He currently teaches seven different  undergraduate courses including the freshman 
computer skills course.  He doesn’t live in a log home.  Email:  gshuvard@vcu.edu 
 

P
age 6.9.8


