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A Class Project for Low-Power Cache Memory Architecture  

 
Abstract 

 

This paper presents a class project for a graduate-level computer architecture course. The goal 

of the project is to let students (two or three students per team) understand the concept of 

computer hardware and how to design a simple low-power cache memory for future processors. 

The project consists of three different tasks: 1) Design - Designing a low-power cache memory 

(instruction or data) at the abstract level after literature research; 2) Code - Writing a simulation 

program on top of a simulator (e.g., Simplescalar); and 3) Test - Running a test program to 

evaluate the low-power cache memory by using performance metrics, such as power 

consumption, cache miss rate, execution time, etc. For the first task, students are required to 

design their own low-power cache memory. For the second task, they need to write (or modify) a 

simulation program to implement their design. Finally, they should run benchmark programs 

through the program to evaluate their cache memory.  

 

1. Introduction 

 

A simulation program has been an important tool to verify the functions for logically designed 

computer hardware before chip fabrication [1]. A graduate-level computer architecture course, in 

general, deals with designing a low-power cache memory, branch predictor, superscalar, VLIW, 

or multi-processors at the abstract level instead of the circuit level [2][3]. After the logical 

design, students are required to simulate the design with the benchmark programs to inspect 

whether or not it works properly. This paper presents in detail how to design a low-power cache 

memory for a graduate-level computer architecture course.  

Simulation programs are useful for many computer-engineering courses since they can help 

students to develop and evaluate their ideas with less hardware costs [4][5]. However, some 

detailed simulators used to discourage students with many options for selection and lengthy lines 

of code [6]; students can just repetitively implement the fixed, limited operations of the 

simulators; therefore, it makes difficult for the students to design a new function logic.  

To implement a low-power cache memory, students are required to design a mapping 

function, replacement policy, write policy, and low-power cache memory architecture at the 

abstract level [1][3][7]. After that, they can write (or modify) a simulation code for their cache 

memory and test it to check whether or not working properly.  

This paper is set out explained as follows: Section 2 introduces the procedures for designing a 

low-power cache memory; Section 3 discusses how to grade the project and provides students’ 

evaluation; and Section 4 gives the conclusions.  

 

2. Project Procedures 

 

Three major procedures for the class project are design, code, and test. This section shows 

each procedure in detail. The first step is to design an efficient mapping function for a cache 

memory to improve system performance.  

Figure 1 shows three types of cache misses: compulsory misses, capacity misses, and conflict 

misses. Compulsory misses come from the cold start, the first time accesses; capacity misses 

depends on the cache sizes; conflict misses are caused by competing one location in a cache 
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memory. In general, conflict misses are very critical for a small cache size, especially level-one 

on-chip cache memory, and directly affect the power consumption, system performance, and 

costs. Therefore, the goal of the project is mainly on designing an efficient cache memory to 

reduce conflict misses and power consumption.  
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Figure 1. Three types of cache misses and a low-power cache scheme 

 

2.1 Design Procedure 

 

There are five main factors to design a cache memory [3]. Those are the cache size, block size, 

mapping function, replacement policy, and writing policy. In this paper, we focus on small on-

chip cache sizes (e.g., 32KB or 64 KB) with the popular block sizes (e.g., 32bytes or 64 bytes) 

and include one more factor, power consumption, to design a low-power cache memory for 

embedded systems. Therefore, there are four factors to design a cache memory, except cache and 

block sizes: 1) Design a mapping function; 2) Design a replacement policy; 3) Design a writing 

policy; and 4) Design a low-power cache memory. Since there are many cache specifications to 

determine, we recommend students to work as a team, 2 to 3 students per team, to discuss many 

possible topics. Through the discussion, students can build strong and clear concepts for 

designing a low-power cache memory. 

 

2.1.1 Design a mapping function 

 

For the first step, each team is required to design a mapping function to access the cache 

memory in an efficient way. 

For example, Figure 2 shows two different mapping functions: 2-way set-associative 

(conventional) and 2-way skewed-associative (more efficient one). Each scheme has two banks 

and each bank has its own mapping function. For Figure 2-a, the mapping functions F0 and F1 are 

the same. Therefore, if three instructions (A0, A1, and A2) access to the same location in the 
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bank 0 and bank 1, there should be a conflict since they are located in only two banks. 

Meanwhile, if the mapping functions F0 and F1 are different like Figure 2-b, the conflict can be 

resolved since three instructions can be placed into three different locations in the Bank 1. 

Therefore, the mapping function is an important factor to reduce cache misses. Each team can 

design any kinds of mapping function to reduce conflict misses by dispersing instructions in a 

bank. 

Data            Tag Data            Tag

Data            Tag Data            Tag

a) 2-way set-associative

b) 2-way skewed-associative

F0 F1

A0, A1, A2
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F0(A0) = F0 (A1) = F0 (A2)
F1(A0) = F1 (A1) = F1 (A2)

F0(A0) = F0 (A1) = F0 (A2)

F1(A2)

F1(A1)

F1(A0)

Bank 0 Bank 1

Bank 0 Bank 1

F0 and F1: Mapping functions

A0, A1, A2: Instructions with

the same location in Bank0.

 
 

Figure 2. Mapping functions for 2-way set-associative and 2-way skewed-associative 

 

2.1.2 Design a replacement policy 

 

After designing the mapping function, students need to design a replacement policy to 

place/replace data effectively. For example, if there is a cache miss, it is necessary to bring a data 

(or instruction) from a lower-level memory (memory) and place (or replace) that data into the 

cache memory before sending it to the processor. At that time, if we replace the data, which will 

be used in a near future, it can deteriorate the performance since it should cause another cache 

misses later. Therefore, it is important to design an efficient replacement policy to increase 

chances to be referenced by the processor again.  

Figure 3, as an example, shows the PLRU  (Pseudo Least Recently Used) replacement policy 

for 2-way skewed-associative: “Whenever there is a cache miss, the flag in the bank 0 would be 

checked: if the flag bit in the bank 0 is ‘0’, then replace data in the bank 0 and set the flag to 1; 

otherwise, replace data in the bank 1 and set the flag to 0 [13].” 

After designing a replacement policy, each team needs to implement the replacement policy 

with the mapping function by using a small data manually to make sure for the possible worst 

cases.  
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Figure 3. Replacement policy for 2-way skewed-associative  

 

2.1.3 Design a writing policy 

 

There are two types of the writing policy: write-hit policy and write-miss policy.  For the 

write-hit policy, the write-back policy is popular since it updates data only in the cache memory 

until it is replaced with the data from the lower-level memory (memory). If it is replaced because 

of a cache miss, the data should be updated to the memory before it is replaced in the cache 

memory. It works well to reduce memory access time, which is much slower than the cache 

memory, compared to the write-through policy. The write-through policy updates the cache 

memory and memory at the same time for any cache write-hits. It would take more time 

compared to the write-back policy since it should access the memory for every write-hit case. 

For the write-miss policy, there are also two general policies, such as the write-allocate (to 

update the cache memory first and memory later) and the write-no-allocate (to update memory 

only) for a write-miss. Each team can design write policies based on the conventional write 

policies to accommodate future references effectively. 

 

2.1.4 Design a low-power cache memory  

 

Figure 4 shows hardware-complexity comparison between two cache memories since cost is 

also an important factor for cache memory design. In Figure 4, the cost of 2-way skewed-

associative would be more expensive than 2-way set-associative because 2-way skewed-

associative uses xor mapping functions, which is more complex than 2-way set-associative. 

However, since the xor mapping functions can reduce cache misses effectively, there can be a 

tradeoff between two cache memories regarding the performance and cost.  

To reduce power consumption for a cache memory, it has been necessary to reduce the 

frequency of memory accesses by developing techniques such as line buffering. Some research 

has indicated that a small buffer line between CPU and an L1 (Level-one) cache memory helps 

in reducing the accesses to the L1 cache and thus reduces the energy dissipation in the L1 cache. 
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Figure 4. Comparison hardware complexity for 2-way cache memories 

 

For example, the CoC (Caching on Cache) is a small-sized sub-cache of the L1 cache [10]. 

The CoC is accessed first for every memory reference: If the reference is a hit, the lines in the L1 

cache are disabled (no access to L1 cache). Otherwise, the L1 cache is accessed normally. The 

access operation involves maintaining a tag and data of the cache lines and also adds latency to 

the normal cache access. For another example, the Filter cache is also a small cache between the 

CPU and the conventional L1 cache (the conventional L1 cache used to be treated as a L2 cache) 

[11]. The Filter cache contains data with high hit probability based on locality. Therefore, a miss 

on the filter cache directs the references to the L2 cache, which used to be a conventional L1 

cache. The power savings are earned by maintaining a small-size L1 cache (Filter cache) instead 

of a regular L1 cache. These techniques require additional data and tag arrays that consume 

power with every reference. Each team can design a low-power cache memory like the above 

examples. 

 

2.2 Code Procedure 

 

Since the advanced computer architecture class is a graduate-level course, programming 

languages like C/C++ or VHDL/Verilog would be prerequisites for the class in general [4].  

In the previous section, each team could design the mapping function, replacement policy, 

writing policy, and low-power cache memory for their own purpose. The next step is to write a 

code for their cache memory. In other words, after students write a code according to the 

procedures, they should port the code into a simulator like SimpleScalar. Figure 5 shows five 

SimpleScalar standard simulator models as an example. 
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Figure 5. SimpleScalar standard models [8] 

 
Figure 6. Example: a data cache access function in the SimpleScalar [9] 

 

SimpleScalar is an open-source simulator to implement the computer architecture to evaluate 

devices and performance [8]. In Figure 5, SimpleScalar has several standard models for the 

architecture and each team can use the ‘Sim-Cache/Sim-Cheetah’ model for the low-power cache 

memory project. To use those standard models, each team should: 1) Install SimpleScalar into 

each team’s working directory; and 2) Compile and link to generate the binary files according to 

[9]. After each team installs the SimpleScalar into the working directory, they can add the code 

for the mapping function, replacement policy, write policy, and low-power cache memory into 

the SimpleScalar before compiling and linking. After that, they can compile and link it to 

evaluate the cache memory. P
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Figure 6 shows an example of the data cache access function code to be added into the 

SimpleScalar model. Like Figure 6, each team can write codes for a cache memory and port 

them into the SimpleScalar to implement. 

 

2.3 Test Procedure 
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Figure 7. Test procedure with benchmark programs 

 

After students complete the design and code procedures, they need to test their architecture 

with the benchmark programs. 

Figure 7 shows the procedure how to test the cache memory with benchmark programs. The 

benchmark programs should be compiled and linked to produce the binary, which is the real 

input for the simulator. Since the simulator is a virtual architecture, it has its own instruction sets; 

and it is necessary to compile the benchmark programs with the compiler provided by the 

SimpleScalar to run Benchmark executables (e.g., compiled binaries) [9].  

After you create the input binaries, you can implement the simulator with the input data by 

using the following command line in Figure 8. 

Figure 8 shows the command line with many options, such as a level-one data cache (dl1), 32 

lines in a cache (32), associativity (1 as a direct-mapped cache), replacement policy (1), the 

binary input program (/bin/test.ss), etc. Each team can add more options after modifying some 

procedures in the SimpleScalar models. 

After you complete the simulation with benchmark programs, like the Figure 7, you can get 

the simulation results, such as I references (# of instructions), cache miss rates, etc. With the 

results, you can evaluate your cache memory by using some metrics, such as cache miss rate, 

execution time, IPC (Instructions per cycle), power, etc. Those metrics are [1]: 

• CPU Execution time = IC × Effective CPI × t – (1) 

• Effective CPI = Ideal CPI + Average memory stalls per instruction – (2) 

• AMAT = Hit time + Miss rate × Miss Penalty – (3) 

** IC (Instruction Count), CPI (Cycle Per Instruction), AMAT (Average Memory Access 

Time). 
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./sim-cache –cache:dl1 dl1:32:32:1:l ../bin/test.ss
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Figure 8. SimpleScalar command line to run a test program 

 

Cacti can be used for computing power consumption for cache memory architecture [12]. 

After completing the project procedures, students are required to prepare and submit a final 

project report. The final report would include the followings: 

• An explanation of the mapping function, replacement policy, and write policy; 

• An explanation of the low-power cache memory architecture; 

• A discussion of how to test the architecture; 

• A discussion of errors in the architecture; 

• A discussion of how to optimize the errors; and 

• Simulation results such as cache misses, IPC, power consumption, etc. 

 

3. Grading projects and students’ evaluation 

 

The grading for the project mainly depends on the work from the three procedures. For the 

design procedure, we need to check the efficiency of the designed mapping function, 

replacement policy, write policy, and low-power cache memory. For the code procedure, the 

major point is to check whether each part of codes works properly or not. For the test procedure, 

the whole test procedure would be checked with the results. In addition to the grading, it is 

necessary to check the discussions among team members since the goal of the project is to share 

ideas and get clear concepts through their discussions.   

As a case study, Figure 9 shows the project grading for the project during fall semesters in 

2004 and 2005 at the Mississippi State University. There were 4 teams, 2 students per team, and 

their final reports were graded based on efficiency (30%), correctness (20%), testing (10%), 

results (35%), and discussions (10%). 
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Figure 9 shows that three teams (75%) got grade A (very good and excellent), and one team 

(25%) had grade B (between 80% and 90%) in 2004 and 2005. Therefore, we could say the class 

project was successful to let students understand the concepts and design process for the low-

power cache memory. 

In addition, we submitted two final reports (from 2004), which have excellent grades, to the 

IEEE Southeast Conference 2005 (referred conferences), and they were accepted as regular 

technical papers. And one of them also accepted as a short paper for the IEEE IPCCC ’05 

(International Performance Computing and Communications Conference). Currently, we are 

preparing two papers to submit to a journal and a conference with the Fall 2005 reports. 

From the students’ evaluation, we found that the class project worked well for letting 

students understand how to design a cache memory. However, since there was a one-week break 

(e.g., Thanksgiving break) during the project term (from Oct. 22 to Nov. 28), most students were 

short of time to finish the project on time. Therefore, it would be better to start the project one 

week earlier than Oct. 22 for every fall semester (from the students’ comments).   

 

4. Conclusions 

 

There have been so many software tools developed to teach computer architecture classes. 

Traditionally, those tools have many options to select for any proper operations or consist of 

lengthy lines of code to figure out. Therefore, students are required to figure out the options first 

and then learn the proper operations. In addition, since the tools used to have limited functions to 

operate, it is difficult to design a new function logic with the tools. Therefore, those tools let 

students understand only the limited operations instead of creative design since they lack 

experience of the designing process.  

This paper introduces a class project for designing a cache memory with the three procedures: 

1) Designing a cache memory; 2) Coding the designed cache memory and porting them into the 
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SimpleScalar simulator; and 3) Testing the architecture through the simulator with the 

benchmark programs. 

According to the grading and students’ evaluation from Mississippi State University, we found 

that these procedures worked successfully for the graduate-level advanced computer architecture 

class since all students who participated in the class project had As and Bs for their grades and 

two teams’ final reports (out of four teams) were accepted at a conference in 2005. Therefore, we 

believe that students could learn fundamental concepts and the design process clearly for the 

advanced computer architecture class and gain confidence in the area of low-power cache 

memory design.     
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