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ABSTRACT 

 

The low-density parity check (LDPC) code is an error correcting code that closely approaches 

the information theoretical channel limit, also called channel capacity. LDPC and Turbo codes 

are the only two currently known codes that are denominated capacity approaching codes, and 

are extensively used in communication systems requiring high capacity.   It was only after 

several decades of research, sprung from Claude Shannon’s seminal work on the mathematics of 

communication theory, that a capacity approaching code was designed.  Developing a capacity 

approaching code requires the knowledge of a large variety of different error correcting 

approaches, generally based on advanced mathematic skills.  This knowledge typically is taught 

in classes dealing with coding theory, error correction codes, or information theory etc.  Hence, 

LDPC codes are seldom taught in an undergraduate curriculum, as they are combined in graduate 

programs with other coding techniques. However, it has been recently found that LDPC code can 

be understood from factor graphs, which is a dramatically different approach as that used 

traditionally in coding theory classes. With the factor graph approach, it is possible for 

undergraduate students to have an introductory experience to error correcting codes in the LDPC 

family.  This paper documents the findings resulting from a project done in a senior-level Digital 

Signal Processing (DSP) class.  The successful class project proves that it is possible for 

undergraduate students to understand LDPC codes based on factor graphs, without any other 

traditional coding theory background. 

 

 

I. INTRODUCTION 

 

Our lives are a daily succession of conscious information exchanges.  We talk to people, listen to 

the radio, watch TV, browse the Internet, make phone calls, check the stock market with our cell-

phones, send text messages, etc.  Some information exchange is done without us even realizing it. 

We swipe our debit card to buy an espresso and a connection is immediately made to transfer the 

funds from our bank account to that of the vendor.  We approach a grocery store entrance and a 

signal is sent that opens the door automatically.  Our cell-phones are constantly sending location 

information so that we can be located immediately, if needed.  We enter a bank and a closed 

circuit television system is alerted to begin recording a security video.  Most of these examples 

include some form of electronic communication technology.  The amazing rate at which 

information availability is increasing has also increased the number of Internet users to over 1.5 

billion people, a 225% increase since the peak of the dot com boom in the year 2000 [1].   

Another electronic communication technology whose use has increased significantly in the last 

few years is mobile-phones.  Over 2.4 billion people use cell-phones [2].  Third-world countries 

show the largest increase in cell-phone usage, since no tangible channel (i.e. copper lines, optical 

fiber, microwaves, etc.) is needed (other than ubiquitous towers) to enable communication.  

Although a plateau has not been reached yet, further increases in availability of Internet and cell-
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phones (and any other communication systems) are limited by one factor: channel capacity.  Any 

channel used for electronic communication has an inherent capacity (i.e. transmission limit) 

associated with it.  This leads to a need to add more infrastructure (i.e. new channels).  While 

building new channels solves the problem, it is costly and time intensive.  Another way of 

solving the problem exists that is both cheaper and faster to implement: improve existing 

transmission algorithms to better utilize channels already in place.  These improved transmission 

algorithms, also called channel codes, or simply codes, will lead to cheaper and faster 

communication, and at the same time will open the way to modern communication being more 

easily available to larger segments of the world population.   

 

One of the findings in Shannon’s seminal paper in 1948 [3] was the proof of mathematical limits 

to the capacity of given channels.  The immediate consequence of these results was a new area of 

research called channel coding.   The main goal of channel coding is to find codes that approach 

the theoretical limit predicted by Shannon. The best existing codes are called capacity 

approaching codes, as they achieve reliable communication at a rate approaching Shannon’s 

limit.  Since 1948, several efficient channel codes, which can detect and fix errors in various 

scenarios have been developed by different researchers in the decades following Shannon’s 

findings. It wasn’t until 1993, however, that the first capacity approaching code was developed 

by Berrous et al [4].  These codes were called Turbo codes.  After this landmark paper, another 

capacity approaching code was presented by Mackay and Neal in the 1990s [5, 6].  Mackay and 

Neal’s work was heavily based on resuscitating low-density parity check codes, first introduced 

by Gallager in 1963 [7].  At the time Gallager had introduced LDPC codes, the algorithm was 

mostly ignored by the coding community because of its complexity, which was prohibitive with 

the technology existing at the time.  Improvements in semiconductor manufacturing allowed 

both of these technologies to be implemented. Hence, it is required for undergraduate students 

having an interest in the communication field to gain some experience in channel codes or error 

correction codes to understand overall communication systems. Due to continuous development 

of coding theories to understand capacity approaching codes, it was recently found that Turbo 

codes and LDPC codes can be explained by one generalized approach called “codes and graphs” 

[8, 9].  This leads to many other algorithms to be clustered under the “factor graphs” family.  

Further, one popular LDPC decoding method called the “Sum-Product” algorithm was 

introduced based on factor graphs.  Using this approach, the design of efficient LDPC codes 

becomes, in essence, the finding of optimal ways of connecting each node in the factor graphs. 

This approach leads to a way to introduce error correcting code of LDPC to undergraduate 

students without many advanced technical topics used in traditional coding theory.   

 

Even though LDPC codes can be understood through linear algebra, factor graphs and traditional 

channel coding, this process is not straight forward. The mathematics involved in channel coding 

can be overwhelming to an undergraduate student. The large number of channel coding methods 

and their inherent complexity often results in students losing interest in the topic.  This paper 

introduces a class project that is both intriguing to the student and manageable in a typical 

undergraduate curriculum based on basic factor graphs and simple linear algebraic operations.  

Note that a basic knowledge of linear algebra is useful in understanding the algorithms, but not 

critical within the context of communication systems. Not only is the project tailored to maintain 

students’ interest, but it also helps students to obtain a holistic understanding of a communication 

system including error correction, without requiring graduate-level classes in coding theory.  The 
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project includes a GUI implementation, where different data sources can be selected for 

encoding with LDPC.  The encoded signal is modulated and then contaminated with various 

types of noise in the simulated channel.  The signal recovered in the decoder is compared with 

the original and a graph for bit error rate (BER) visualized in the GUI.  A goal of this class 

project is to allow students to experience error correction codes and see its functionality within a 

holistic overview of communication systems. 

 

II. ENCODING OF LDPC CODE 

 

In order to transmit signals over noisy transmission channels such as seen in radio frequency 

communication and similar applications, it is necessary to incorporate error checking codes. 

Generally a form of parity-checking is used, in which extra bits are added to the transmission 

through an encoder, allowing a decoder at the receiver side to perform constraint checks on each 

bit received. These parity checks allow the receiving device to remove errors from the received 

signal. Unfortunately, it is not possible to encode a signal that absolutely guarantees equality 

between sent and received data, as proved by Shannon [3]. However, low-density parity check 

(LDPC) codes demonstrate high performance capabilities, arbitrarily close to the Shannon limit, 

and are becoming feasible with today’s processing technology [10]. LDPC codes are founded on 

basic linear-algebra principles. In this paper math is performed in the binary subspace of real-

numbers, and hence addition and multiplication are performed in base 2, e.g. addition becomes 

the XOR operation, and multiplication becomes the AND operation. LDPC codes utilize a sparse 

binary parity-check matrix, H, with dimensions M×N.  Matrix H can be either regular, meaning 

that there are a specific number of 1’s per row and column, or irregular, in which there may or 

may not be a constraint on the number of 1’s. In this project we will deal only with an irregular 

parity-check matrix. The sparseness of H means that there are a very low number of 1’s in H, 

compared to it’s total size. Matrix H can be expressed by a factor graph.  One example showing 

the relationship is shown in Figure 1.  A graph called Tanner graph (factor graphs can be 

understood as advanced graphs based on Tanner graph) is shown in Figure 1-(a) and the 

corresponding H matrix is shown in Figure 1-(b). In Figure 1-(a), there are three check nodes and 

5 variable nodes. Hence, the graph can be expressed by the 3×5 H matrix shown in Figure 1-(b). 

In addition, the first check node in Figure 1-(a) is connected to the 1
st
, 2

nd
, and 5

th
 variable nodes, 

which means there are 1’s in the 1
st
, 2

nd
, and 5

th
 columns of the first row of the H matrix shown 

in Figure 1-(b).  The 2
nd

 and 3
rd

 rows of H are found in a similar manner.  The 1’s in each 

column of H imply the connection between check nodes and variable nodes in the graph of 

Figure 1-(a). 

 

 
 

(a) Tanner graph. 
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(b) Matrix H corresponding to the graph in (a). 

 

Figure 1. The relationship between a graph and matrix H. 

 

 

The parity-check matrix is used to encode a message or codeword x. Both the sending and 

receiving device have a copy of H, which for example can be implemented as a lookup table in 

hardware memory. The columns in H correspond to the bits of the codeword, and the rows in H 

correspond to the parity-checks on the codeword [10]. A valid codeword will satisfy 0?Hx . 

The meaning of the equation, 0?Hx , can be explained as illustrated in Figure 2.  When a 

codeword x={1 0 1 1 1} is received, each check node performs the binary XOR operation with 

the corresponding bit in x. If all check nodes generate a 0, then it means that it is a valid 

codeword, as shown in Figure 2. 

 

 
 

Figure 2. Pictorial representation of how valid codeword can be check by a graph 

 

 

 

Several algorithms for the encoding of x are available in [10]. The method used in this 

demonstration creates parity check vector bases using sparse LU decomposition. The algorithm 
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attempts to create a lower-triangular and upper-triangular matrix that is as sparse as possible, and 

that satisfies for equation, 0?Hx  [11,12]. The algorithm is described in Radford M. Neal’s 

presentation Sparse Matrix Methods and Probabilistic Inference Algorithms [12] and consists of 

the following basic steps:  

 

1) Partition H into an invertible M ×M left part A, and a M ×N right part B. 

2) Partition the codeword x into M check bits c and N-M source bits s.  
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3) Set z = Bs and row reduce Ac = z to find Uc = y, where U is the upper triangular matrix. 

4) Record the reduction as the solution to Ly = z.  

 

All of this is shown in [12]. Combining the check bit vector c and the codeword x gives a vector 

[x|c] that can be transmitted to the receiver for decoding. 

 

 

III. DECODING OF LDPC CODE 

 

Decoding for this demonstration is achieved using four different sum-product algorithms as 

implemented in MATLAB in [13]. The basic theory behind these instances of sum-product 

algorithms was first developed by Robert Gallager in the 1960’s, and is known as belief 

propagation or probability propagation. Belief propagation can be implemented in several ways, 

all of which attempt to calculate the probability of a message bit being 0 or 1, using probability 

and likelihood ratios [11]. The main idea behind simple LDPC decoders is widely known as the 

Bit-Flipping decoding algorithm [7]. This algorithm can be explained with Figure 1 or Figure 2. 

Assume a received codeword is x = {1 1 1 1 1} in Figure 2. This means that there is an error, 

because the check nodes in Figure 2 are not all zeros (i.e., 0”Hx ) for x = {1 1 1 1 1}. 

Comparing the x = {1 0 1 1 1} (i.e., error-free codeword) given in Figure 2 with x = {1 1 1 1 1}, 

we know that there is an error on the second bit of the received codeword, x. The underlying idea 

for decoding LDPC can be explained as follows.  

 

1) Compute each check node sums with the given codeword. (i.e., x = {1 1 1 1 1}). It is 

shown in the following figure, where “X” denotes that parity check sum is not zero. 
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2) For each variable node, count the nonzero parity check sums. 

 

                                   
3) Flip the bit of the variable node having the largest number of nonzero parity check sums. 

                                
 

4) Repeat steps 1) through 3) until all parity check sums are zero.  

 

The above concept can be modified using different mathematical methods for calculating 

probability rates.  This leads to various decoding algorithms for LDPC, such as log domain, 

simplified log domain, and probability domain sum-product decoding algorithms [15]. Further, P
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the algorithms can be iterated to increase accuracy, and some of them have been shown to reach 

bit-error rates (BERs) close to the Shannon limit [5, 15]. 

 

 

IV. GRAPHIC USER INTERFACE SIMULATION OF LDPC CODES 

 

To simulate the error correction functionality of LDPC codes, the simple communication system 

shown in Figure 3 was implemented using a Graphic User Interface (GUI) environment 

developed with MATLAB. The communication system is shown to include source 

formatting/deformatting, LDPC encoder/decoder, modulation/demodulation, and a loop 

eliminator.  Binary phase shift keying (BPSK) is used for the modulation and demodulation 

blocks.  To observe the performance of the LDPC code, the results of error correction code of 

LDPC is compared with the results without any error correcting mechanisms.  This is shown in 

Figure 3 as the bypassing branch of LDPC encoder and decoder.  Figure 3 also shows a loop 

elimination block. Loops are related to the performance of LDPC [14], and generally refer to any 

closed path starting from one check node and ending at the same starting check node in a graph.  

The loop elimination algorithm to remove any loops composed by 4 paths, or ones, in a graph or 

H matrix is implemented in the class project. The loop elimination algorithm is performed off-

line (i.e., before simulation) so that the resulting H matrix that does not have loop 4. The matrix 

obtained by the loop eliminating algorithm is used in the simplified communication system 

shown in Figure 3. To simulate a noisy channel, noise is added through software to achieve a 

desired SNR.  

 

 
Figure 3. A simple communication system to simulate the LDPC code 

 

 

The main GUI screen of the finalized class project is shown in Figure 4. The software allows the 

user to adjust parameters for the encoding, transmission, and decoding processes. The user can 

choose input data in image form, generate a random parity check matrix based on the size of the 

image data, choose an encoding strategy, select decoding algorithms, input noise and the type of 

noise, and finally produce a BER plot and step-by-step process plots. In Figure 4, four different 

decoding algorithms written by Bagawan S. Nugroho [13] are incorporated into the overall 
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system.  The dot plot under “Parity Check Matrix” in Figure 4 is for matrix H, where the blue 

dots are 1s in the obtained matrix. Figure 5 presents another GUI window that shows the process 

of the implemented LPDC code simulation. A user can observe how error correction codes help a 

communication system. The results with LDPC and without LDPC are shown in Figure 5 at the 

given SNR.  By integrating all blocks in Figure 3 into a GUI simulation system, students can 

have a holistic view of communication systems, as well as get a flavor of the importance of an 

error correcting system. Several parameters given by the GUI system help to better understand 

the various processes of communication systems. 

 

 
 

 

Figure 4.  Main screen of MATLAB demonstration software 
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Figure 5. Process step plots, including BER graph  

 

 

 

As a final comparison, a BER plot is given in the bottom right of Figure 5 which shows the BER 

curves for the non-LDPC encoded case, and for the log domain, simplified log domain, and 

probability domain sum-product decoding algorithms, provided in [13]. The different options in 

the communication system of Figure 3 are chosen in the GUI main window shown in Figure 4. 

Data size for the images used is 256×256. The number of iterations for encoding and decoding is 

set at 5. From the simulation results shown in Figure 5, the functionality of error correcting codes 

within the context of communication systems can be better understood. 

 

 

 

 

V. CONCLUSIONS AND FUTURE WORK 

 

This paper describes a senior-level undergraduate class project that simulates a communication 

system using LDPC as the error correction code.  Usually, LDPC codes are introduced in coding 

theory, error correction code, or information theory classes at graduate level. However, the 

LDPC code itself as a particular example of error correction code can be explained without using 

advanced mathematics because it can be understood by basic factor graphs and simple linear 

algebraic operations. Hence, a LDPC error correction simulation is a good sample project that 

intrigue students and entices them to further the study of coding theory.  Moreover, it generates a 

better understanding of overall communication systems.  The class project was successfully 

implemented based on a GUI environment, and it correctly allows the student to understand the 

usefulness of error correcting codes within a larger communication system. The successful 

completion of the project proves that a simple introduction of LDPC codes with graphs and basic 

linear algebra is enough for undergraduate students to realize the functionality of error correction 

coding techniques in communication systems.  Empirical data shows that students’ interest in 
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communication systems was piqued by this class project.  Throughout the final presentation, 

students stated their interest in furthering their studies in the field.  Moreover, students suggested 

that more projects along the lines of the one hereby presented should be included throughout the 

curriculum.  

 

The Department was encouraged by student comments regarding the project and has decided to 

include similar projects in upper division classes.  We intent to include the data gathered from 

these projects as another way to measure the achievement of program outcomes related to the 

“lifelong learning” ABET criterion. 
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