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1.  Introduction 
 
An issue receiving attention in the undergraduate Computer Science curriculum over the past 
few years has been the high failure rate in the freshman programming course.  This course 
generally corresponds to the ACM/IEEE course designation CS1.  It is normally an introductory 
but fast-paced and challenging course for students who have not previously studied computer 
programming (programming novices), but who do have a minimum level of mathematical 
maturity (students who are calculus-ready).  The course attracts an audience composed of majors 
from Computer Science, Information Technology, and Computer Engineering, for whom it is a 
requirement for their major, as well as students from other science and engineering departments.  
Failure rates of 15% to 30% are not unusual 10, and the problem is widespread, from top-tier 
private schools, through the state universities, all the way to the community and junior colleges.  
There are many possible causes, and some can be blamed on the students themselves (poor 
advisement, poor math preparation at the high school level, among others).  But other causes 
must be contributors.  While computer programming might be a more technically challenging 
skill to master than, say, writing a good English essay, it seems odd that it should suffer a higher 
failure rate than other challenging freshman-level courses in calculus, physics, or engineering. 
 
Many educators have begun to assign the blame on the teaching approach.  In this paper we 
critique some current teaching approaches and agree that this is one source of the problem.  A 
glance at almost any textbook on introductory programming will reveal a presentation that starts 
from many flawed assumptions about the target audience, and that does not follow well-
established principles for how to teach technical material.  Computer programming education 
simply is not as mature as the teaching of the sciences and engineering, and this is reflected in 
the CS1 failure rate.  In this paper we explore some promising approaches from well-established 
research in cognitive psychology, which has produced results on how students learn, and suggest 
some new ways to apply these results to computer programming instruction.  We focus on two 
CS1 topics in particular – iterations (loops) and decisions (if-else) – and suggest ways to 
organize the presentation of these topics.  The foundation of the approach is to use schemas 
(mental patterns) for teaching both how to solve problems in the abstract and how to convert 
those solutions into computer programs. 
 
The organization of the paper is as follows.  First, we review the relevant results from cognitive 
psychology for how students learn in general, as well as results specific to computer 
programming learning.  Next we offer a short critique of the approach used by many current 
textbooks that we call syntax-driven.  This approach places undue early emphasis on language 
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syntax (i.e., “where to put the semicolons”) and not enough emphasis on understanding and 
solving problems.  Next we give an overview of an alternative approach we call schema-driven, 
which is based on the results of the cognitive psychology research discussed earlier.  This 
approach allocates more resources early on to the teaching of problem solving and solution 
approaches, saving discussion of language syntax specifics until much later.  In Section 4, we 
offer some examples of how to apply this approach to the teaching of iterations and decisions.  
Finally, in Section 5, some directions for future work are outlined, including plans for evaluating 
the effectiveness of the approach with an assessment of student progress for CS1 students. 
 
2. Background 
 
We claim that the approach currently used to teach CS1 suffers from a lack of attention to well-
known results from cognitive psychology on how students learn.  In this section, we review some 
of the relevant models of learning in general and then focus on research that addresses learning 
computer programming in particular.  Many of the general models depend on a central concept 
called a schema, which is a mental pattern or model of conceptual or abstract information.  
Based on these results, we present an approach we call schema-driven, which we contrast to the 
more traditional teaching approach we call syntax-driven. 
 
Meaningful Learning (Schema-Based) vs. Rote Learning (Short-Term Memorization) 
 
The cognitive learning process uses both short- and long-term memory, which differ in their 
capacity for holding and manipulating information:  a temporary limited store for short-term 
memory and a more permanent and better-organized store for long-term memory.  A model of 
how memory works called cognitive load theory claims that the short-term memory is limited to 
holding only a few items at a time, thus posing a fundamental constraint on human performance 
and learning capacity (sometimes called the 7 plus or minus 2 rule).  The limitations of the 
working memory are compensated by capabilities of long-term memory. The most important of 
these is schema acquisition, which allows the mind to group information into meaningful units 
that are easy to store in long-term memory and which can be easily retrieved as needed to handle 
information processing and understanding 6. These units are also called chunks in the literature.  
This result means that the teaching of any technical topic, including computer programming, 
depends on the student developing useful high-level abstractions.  Approaches that depend on 
memorizing long lists of facts are doomed to failure because of the limitations of short-term 
memory. 
 
According to Mayer 11, meaningful learning, occurs when the student assimilates new 
information by connecting it to existing knowledge, which is represented by a schema already in 
long-term memory. The learner first focuses on new information as it enters short-term memory 
(called reception). She then retrieves some relevant prerequisite concepts (called the assimilative 
context) from memory by a process of pattern matching. The new material is then connected to a 
pre-existing schema, both of which are now in short-term memory, resulting in an enhanced 
schema. The final step is to store the enhanced schema back into long-term memory. This 
attaching or anchoring of new information onto an existing schema is what differentiates 
meaningful learning from rote learning. Rote learning or memorization occurs when the 
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learner simply stores the new information as a separate schema (not linked to other similar 
schema) in long term memory (see Figure 1). 
 

The theory of Cognitive schemas and its use in learning by The theory of Cognitive schemas and its use in learning by 
association i.e. Meaningful learning (anchoring)association i.e. Meaningful learning (anchoring)

Permanent or meaningful learning requires the assimilation of new
information by connecting it to existing knowledge (cognitive  schema). 
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Figure 1. Illustration of the process of meaningful learning 
 
An example of the importance of meaningful learning for novice programmers is the use of the 
equals sign “=”.  The novice programmer begins the study of programming with an already 
established understanding of this symbol’s algebraic meaning, but the symbol has very different 
meanings in the algebraic and programming domains.  Instructors must avoid the assumption that 
the student can simply use inapplicable existing schemas from algebra as an anchoring schema 
for new programming concepts.  At the same time, cognitive overload must be avoided by 
introducing concepts one at a time in a sequence of gradually increasing complexity. 
 
Meaningful Learning Applied to Computer Programming 
 
Results from this research that apply to learning programming show that the cognitive skills used 
in understanding problems and finding a solution differ from those required for composing a 
computer algorithm, and these in turn differ from those used in learning to use a programming 
language.  The process of learning a programming language for the purpose of implementing a 
computer solution to an assigned problem involves: 
• Ability to recognize a pattern that describes a solution 
• Recognition and memorization of syntactical units, groups of statements or commands, and 
• Grouping of syntactical units into larger conceptual entities or semantic units that serve as a 

procedure to implement the problem solution pattern. 
As the novice programmer evolves into the expert, she begins to master not just the meaning of 
individual program statements but also the program schemas that encode series of statements 
into higher-level concepts. Acquiring syntactic knowledge involves a form of rote memorization, 
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which can be mastered by familiarity through repetition (drilling), and error recognition.  
Semantic knowledge on the other hand involves a pattern recognition activity that relies on 
stored schemas as opposed to rote memorization (Figure 2).  Once again, these results emphasize 
the importance of providing programming students with teaching support that fosters the creation 
of the appropriate high-level abstractions. 
 

The theory of Cognitive schemas and its use in the process of The theory of Cognitive schemas and its use in the process of 
constructing a computer programconstructing a computer program
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Figure 2. Cognitive steps involved in programming 
 
The Acquisition of Plans and the Role of Chunking 
 
Mattson 14 poses the question "how does a programmer move from model to code?"  He explains 
that this transition occurs in terms of chunks of operations called plans — code fragments that 
solve a particular problem according to some standard pattern. Plans have been recognized as a 
basic element in programming knowledge representation for many years. Mattson traces these 
ideas to Soloway et al. 3,4,5.  Some authors use the term programming idioms to refer to common 
groupings of low-level computer statements that frequently appear as a unit.  According to the 
plan theory of programming, the ability to group low-level statements into chunks is precisely 
the skill that distinguishes experienced programmers from novices when performing the 
algorithm-to-code translation. As the programmer encounters new problems, new plans are built 
formed, one statement at a time, beginning with some key or fundamental statement 13. 
 
The process of trying to make new mental models correspond to existing ones is known as the 
theory of cognitive fit, first researched by Soloway, et al. 2. Existing experimental work using 
looping constructs led researchers to hypothesize that programmers "…will find it easier to 
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program correctly when the [programming] language facilitates their preferred cognitive 
strategy". 
 
 
Transfer of Existing Problem Solving Skills to New Contexts  
 
Another cognitive aspect of learning that directly applies to programming involves the skills 
transfer process, which occurs after the student has combined new information with knowledge 
that is already in long-term memory.  Further research on how novice students become experts 
shows that for novices, meaningful learning and understanding are too dependent on the learning 
context. Thus they are able to apply what they have learned only when the new problem is very 
similar to the learning situation. The result is a low transfer of creative skills.  This demonstrates 
the need for drilling the student on a variety of similar problems to help them overcome this 
dependence. 
 
Successful Learning Based on Schema Acquisition 
 
Based on these results, the composition of the ideal course teaching programming should assume 
that skill acquisition takes place through separate threads of presentation for each computer 
programming skill – (1) learning to analyze and solve problems, (2) composing algorithms in a 
language-neutral notation, and (3) translating algorithms into code – and all the threads proceed 
in parallel.  In practice, the third thread is often emphasized to the exclusion of the others.  
Because of the limitations of short-term memory, the early stages must be dominated by 
presentation of high-level abstract concepts that the student can successfully convert into a 
schema.  Memorization-heavy topics such as syntax, which run the risk of subjecting the student 
to cognitive overload, must be pushed later in the process, when the student will have already 
developed the schemas to help him absorb this level of detail.  In keeping with the concepts of 
chunking, gradient, and drilling, the design of course material should consider at all times how to 
best structure the organization, sequence and correlation of the concepts to be presented 7,8,9. 
 
To reiterate, current methodologies for teaching programming skills depend heavily on what we 
call a syntax-driven approach, which place less emphasis on learning to solve problem and 
implement solutions through the use of a programming language, and instead place primary 
emphasis on learning the syntax of the programming language features.  The proposed 
alternative we call schema-driven directs the student to spend relatively more time thinking 
about problem characteristics and problem solving solution patterns early on, and only later 
directs the student to focus on the details of language syntax.  In the next section, we give more 
detail regarding the two approaches, plus some guidelines on how to organize teaching materials 
in a schema-friendly way. 
 
3.  Detailed Comparison of Syntax-driven and Schema-driven Approaches 
 
For students, learning how to program is too intimately connected to learning the details of a 
specific language.  Today, for the language of choice on most campuses for CS1 is Java.  Since 
its formal announcement by Sun Microsystems at SunWorld ’95, Java’s popularity has soared, 
and it has quickly become one of the most widely adopted teaching languages.  The popularity is 
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such that Java has acquired the status of high-tech buzzword.  Novice programming students 
come to the field with a desire to learn the details of a fashionable language that is stronger than 
a desire to learn how to solve problems.  This creates a pressure that the educator must 
consciously resist.  Another negative result of the popularity has been an explosion of textbooks 
and less formal how-to books (“Java in x hours”, “Java for non-geniuses”, etc.).  Not all are poor, 
but many offer up teaching presentations that adhere to the syntax-driven pattern.  Such texts 
consider the teaching of language syntax as their primary educational mission, to the exclusion 
of any broader range of topics – development of mathematical insight into the problems 
presented as examples in the text, presentation of problem solving strategies, and formulation of 
algorithms independent of any specific language. 
 
The alternative approach advocated here we call schema-driven, and it is based on the results 
presented in the previous section, which emphasizes 
• Presenting problem types, solution strategies, and related program language elements in 

integrated units. 
• Teaching students to recognize problem and solution patterns (schemas) before attempting to 

translate those solutions into code 
• Introducing the syntax of specific programming language features in the context of the 

problems they are meant to solve. 
 
The approach is heavily top-down.  Each unit initially emphasizes the study of problems and 
solution approaches at a high level, followed by discussion of algorithms and solution design. 
Discussion of specific programming language constructs and syntax is placed at the end of each 
unit. 
 
3.1 Examples and Critique of Syntax-Driven Approach 
 
The following is an example outline of topics from a popular textbook on Java, taken from the 
chapter on iteration.  The text states that the goal of the chapter is to learn how to write programs 
that repeatedly execute one or more statements.  It is typical example of a syntax-heavy approach 
that fails to develop insight into the computational nature of a problem solution before jumping 
into a detailed coded solution. 
 
The first table in the section illustrates compound interest by showing how the balance on a CD 
account (initial balance of $10,000) grows over time, assuming some annual interest rate (5% in 
this example), compounded annually (see Table 1): 
 

Table 1.  Compound Interest Calculation Example 
Year Balance 
0 $10,000 
1 $10,500 
2 $11,025 
… … 

 
The question posed to the student is to determine how long it will take for the balance to reach 
$20,000.  Next, the syntax of the while loop is introduced as the Java statement that is designed 
to compute the answer to such questions.  The generic version of the loop is shown first: 
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 while (condition) { body } 
 
This is followed by a version that has been customized to answer the question: 
 
 while (balance < limit) { 
  yrs++; 
  double interest = balance * rate; 
  balance = balance + interest; 
 } 
 
At the end of this loop, the answer is given by the value of the variable yrs.  Next, a complete 
Java program is provided that more formally solves the original problem.  In brief, the remainder 
of the chapter’s presentation covers: 

• Flow charts as a visualization aid to understand flow of control. 
• Common syntax errors to avoid:  infinite loop, off-by-one, extra and missing semicolons. 
• Loop invariants. 

 
Critique of the Syntax-Driven Approach 
 
The presentation starts off well by illustrating the computation in a tabular form that is intuitive 
and that does not refer to the details of how to calculate it.  Ideally, this table should be followed 
by a discussion of the repetitive nature of the computation required to reach the answer, while 
still avoiding a commitment to programming-specific notation, and how the repetitive approach 
is common to the solution of many similar problems.  Unfortunately, the presentation instead 
moves immediately to the syntax of the Java while loop.  In rapid succession come presentations 
of (1) a generic while loop, (2) a partially completed one, and (3) a two-page source code listing 
for the full program solution. 
 
By devoting most of the page count to the details of while loop syntax, this approach implies that 
the primary skill for the student to master is syntax.  In fact, students at this level have not yet 
learned how to analyze the problem statement itself to understand what the solution should even 
look like, and they have no body of problem solving techniques to fall back on.  Therefore this 
approach is bound to fail.  The true programming novice first needs to be taught (1) how to 
analyze the problem and choose a general solution approach and (2) how to formulate a 
computer algorithm as a more precise statement of the solution approach.  Only after these topics 
are addressed should they study how to translate the algorithm into the final Java program.  Our 
recommendation is that the text should expand upon its excellent initial example and develop 
examples of other iteration-oriented problems and present them in tabular form.  Students need 
to see several examples that compute different values, yet arrive at their respective answers 
according to the rules of a common pattern or schema.  The fatal flaw of the approach used by 
many programming texts is this:  they assume that the student has already acquired these 
abstractions.  Unfortunately, our experience in teaching these concepts over the last five years 
has convinced us that novice programmers, even mathematically advanced ones, do not already 
possess such mental abstractions, but instead must be taught them, and it is the responsibility of 
CS1 to do so. 
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3.2 Overview of Schema-Driven Approach 
 
In this approach, we first teach the novice programmer that solving a programming problem 
begins with recognizing when a problem belongs to some already known problem class or 
“pattern”.  A pattern can be viewed as a generalized way of solving a particular class of 
problems.  Pattern recognition — the ability to search for and identify existing solutions that 
worked for similar problems in the past — is at the center of the learning process.  Typically, a 
pattern becomes more general through reuse. A general pattern is one that solves an entire class 
of similar problems. This usually only appears after successful application of a certain pattern a 
number of times, and then seeing a common pattern throughout these applications.  Second, we 
teach the novice to recognize that corresponding to problem patterns, there are programming 
construct patterns. Finally, we show the student how to find a match between the problem 
solution pattern and the programming language pattern, from which the computer program 
solution may be easily generated. This approach is likely to filter out many pointless and 
uninteresting variations or mutations of the programming language constructs that become a 
distraction in a syntax-driven approach and fail to hook up with the problem solution patterns.  
See Table 2. for a contrast between the syntax-driven and the schema-driven approaches. 
 

Table 2. Overview of Syntax-Driven and Schema-Driven Approaches 

SYNTAX-DRIVEN APPROACH SCHEMA-DRIVEN APPROACH 
Syntax of language constructs is 
presented without a firm connection to 
the problems they solve 

 
Examples are presented and exercises 
are assigned that use the various 
syntactical variations (e.g., BNF)  
 
A sample problem is presented that uses 
the syntax 
 
Programming problems that “fit” (make 
use of the syntax) are then assigned 

Problem description/solution for a group of 
related problems (problem type) that 
exhibit the same solution pattern are 
introduced in a gradual manner 

Language statements and their syntax are 
presented with emphasis on groups of 
statements that perform a useful action 

Useful and applicable syntactic models 
(programming patterns) are presented that  
directly relate to implementing the solution 
of the type of problem presented. 

Exercises are assigned that drill on chunks 
of code (programming patterns) followed 
by programming problems that will require 
the use of these programming patterns. 

 
 Programming schemas (language structure patterns) can be categorized as being behavioral in 

the sense that they represent the handling of particular types of actions, a procedure. They 
encapsulate processes that you want to perform, such as moving through a sequence (as in an 
iteration), or implementing a decision making step or repeatedly performing a set of actions. The 
nature of the different programming languages change the expression and understanding of these 
patterns. The programming patterns themselves use basic principles of organization. These 
principles are based on and reflect the structure of the machine in which they are implemented.  

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

P
age 10.17.8



 
Although it may be easier to understand the patterns in terms of these structural principles, it is 
more useful to organize patterns in terms of the problems they solve, since there is a one to one 
relationship between problem solution patterns and programming construct patterns to 
implement them. 
 
Using the cognitive schemas as the foundation, an instructional methodology can be designed 
that leads the student to a better understanding of the underlying patterns and capturing the 
schemas for himself.   A schema-driven approach will result in a more natural and informative 
set of learning units. The student is more likely to develop correct schemas from these 
presentations, examples, drills, and exercises than from the haphazard series of examples from a 
syntax-driven approach (see Figures 3A and 3B).  
 
 

 

In a syntaxIn a syntax--driven driven approachapproach, new programming structures fail to be , new programming structures fail to be 
anchored to existing matching schemas and are forced to be storeanchored to existing matching schemas and are forced to be stored as d as 
new unrelated schemas (rote learning)new unrelated schemas (rote learning)
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Figure 3A.  Syntax-Driven Learning 
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In a schemaIn a schema--driven approach, the search for matching driven approach, the search for matching 
existing schemas succeed and new programming structures existing schemas succeed and new programming structures 
are anchored to existing matching schemas and stored as are anchored to existing matching schemas and stored as 
enhanced schemas (meaningful learning)enhanced schemas (meaningful learning)
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Figure 3B.  Schema-Driven Learning 
 
In the next section we present guidelines on how to use the schema-driven approach to develop 
presentation material.  Order of presentation of each high-level topic can follow closely the 
recommended topics of ACM/IEEE CS1.  But within each topic, the presentation should follow a 
general sequence described below.  In section 4, these ideas are elaborated in more detail for the 
specific cases of decision problems and iteration problems.  The ideas can be applied to any 
other topic from the CS1 curriculum as well. 
 
3.3 Guidelines for Schema-Driven Approach in Preparation of Teaching Materials 
 
Regardless of the teaching approach used, a CS1 course will cover a similar range of topics, and 
the final collection of teaching materials will of course have similarities.  The differences 
between materials generated according to the two approaches will not be found by a comparison 
of the table of contents, or list of topics to be covered.  They are found only through an 
examination of presentation characteristics for each unit:  gradient, chunking, and repetition.  
The difference is to be found in what drives the presentation of the material and the learning 
process. 
 
Creating Learning Units using a Schema-driven approach 
 
The order of presentation in each unit should follow these steps: 
• Presentation of several problems from a similar class of problems 
• Explanation of the general similarity of solution approach 
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• Introduction of relevant programming language features for this class of problems 
• Integration of the problem solution approach with the programming language feature to 

produce a working program. 
 
The sequence and cognitive contents of the learning units should focus on a specific syntactical 
element, or group of elements, or structure of the language.  Examples are a unit on branching 
(if/else decisions, etc.) or iteration (do/while loops, etc.).  The collection of unit topics is drawn 
from the traditional structured programming paradigm.  For example, we could use the following 
list of major topics:  Storage Concepts (Variables and Types), Operators and Expressions, 
Assignment, Typecasting, Operator Precedence, Simple and Compound Statements, Decisions, 
Iteration, Arrays and Strings (other topic lists are possible).  Depending on the structure and 
course coverage, additional units can be created to cover object-oriented features of the 
language, but these are not part of the current effort. 
 
Below, we describe the components that should make up the learning units. The component list 
is comprehensive, but for a given unit, only a subset of the full list may need to be used. 
 
1. Description of the general type of problems to be solved, presented in an incremental 

sequence, with emphasis on the common patterns 
2. Presentation of the programming element correlated to the problem solution pattern. 
3. Reformulation of a problem solution and the provided programming pattern to give the 

student the ability to adapt existing patterns to similar problems. 
4. Definition and description of programming language constructs, their syntax, and semantics. 
5. Representative examples of syntax use: Well-formed statements are used to illustrate the 

correct use of the syntax. 
6. Commonly encountered syntax errors (typical syntax errors due to grammar or spelling), plus 

examples of common semantic errors (statements that are syntactically correct yet do not 
encode the intended solution). 

7. Constraints, limitations or peculiarities: Whenever an element or structure has a counter-
intuitive usage pattern or an underlying syntactical oddity, it is clearly noted. 

8. Exercises and examples. 
 
In the next section, we provide two examples of schema-driven instructional units. We show 
the steps that should be covered when designing the presentation and practice for these particular 
topics. We assume that the student has successfully acquired the schemas for the preceding 
material and starts with the appropriate prerequisite schemas, plans and code chunks in place. 
The content of these units is representative of units covering the other topics in the curriculum, 
which are not shown here. 
 
4.  Examples of Instructional Units Derived from the Schema-Driven Approach 
 
4.1  Decision Schema 
 
A decision problem is a problem whose solution can be described by choosing a solution to one 
of a set of subproblems.  The original problem can be decomposed into a set of mutually 
exclusive subproblems that fully cover the solution space of the original problem.  A decision 
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schema is a pattern that describes how to solve a decision problem. Concepts regarding solution 
spaces and subspaces are better communicated by means of tables (or Venn diagrams or other 
similar notation), and not by showing coded Java solutions prematurely.  The solutions of this 
type of problem translated into code usually take the form of a series of if-else tests or decisions.   
 
Each solution subspace of the original problem is characterized by some expression that 
identifies it as the solution to the problem instance.  The solution to the original problem then 
reduces to determining which subspace possesses the expression that evaluates to true (there 
must be exactly one expression that evaluates to true because of the assumptions regarding 
mutual exclusion and complete coverage).  The solution to the original problem instance then 
reduces the solution to this problem subspace. 
 
The student must be shown that a problem schema suggests a solution pattern that applies to a 
group of problems that are all isomorphic (having the same shape).  In other words, a schema 
identifies a group of related problems whose solutions all follow the same general pattern.  The 
pattern must be customized with the details for a specific problem before it becomes a specific 
solution, but recognizing the general pattern is a critical goal for the student to achieve at this 
stage. 
 
For the sake of illustration, we present the following group of decision problems:  
• assigning a letter grade based on a numerical value.  
• calculating the tax due  based on an income amount. 
• categorizing boxers based on their weight measurement. 
• handicapping golfers based on their accumulated point scores. 
 
Below we illustrate the problem space for each problem (see Figure 4), noting that each 
problem defines a domain (a set of input values) and a range (the corresponding result for that set 
of inputs).  The student should find it easy to relate these diagrams to the notion of a 
mathematical function, which is a transformation of values from the domain to the range. 
 

Letter Grade            Tax Due     
Domain Range 
nonnegative integers 
0-100 

A, B, C, D, F 
Domain Range 
nonnegative currency 
amount 

nonnegative currency 
amount 

 
Boxer Weight Category               Golf Handicap 
Domain Range 
pounds  
1-300 

Super Heavyweight 
Heavyweight 
Middleweight 
Flyweight 

Domain Range 
nonnegative integers 
0-150 

nonnegative decimal value 
0.0-15.0 

 
Figure 4.  Problem Spaces for Decision Problems 

 
Next, we refine each of the problem spaces to display mutually exclusive, non-overlapping 
subsets and the criteria that separate them, together with their corresponding results (see Figure 
5). 
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     Letter Grade           Tax Due  

       

Membership Result for 
Criteria for Sub domain 
Sub domain 
  0-59 F 
60-69 D 
70-79 C 
80-89 B 
90-100 A 

 
Boxer Weight Category              Golf Handicap 

   
 
 
 
 
 
 
 
 

Membership 
Criteria for 
Sub domain 

Result for 
Sub domain 

$1 - $7,200 $0.00 
$7,201 - $12,000 12% of Income 
$12,001 - $22,000 18% of Income 
$22,001 and above 25% of Income 

Membership 
Criteria for 
Sub domain 

Result for 
Sub domain 

    1-120 Flyweight 
121-160 Middleweight 
161-200 Heavyweight 
201-300 Super  Heavyweight 

Membership
Criteria for 
Sub domain 

Result for 
Sub domain 

  0-30  2% of points 
31-60  4% of points 
61-80  6% of points 
81-100  8% of points 
101-150 10% of points 

Figure 5.  Detailed Decision Plans for Decision Problems 
 
Using tables, the range of possible inputs and results for each decision problem is now explicitly 
laid out, making it easy for the student to consider the logical connection that must exist between 
input and result for any given row. 
 
The student is now shown that solving a decision problem can be described as: 

• Consider a specific input value for the problem 
• Scan or search the problem table to find the input range that the input value belongs to 
• Take the corresponding result for that range as the result or answer. 

 
This series of steps is the decision problem schema.  The student should consider how that, 
once a decision problem has been captured by describing its problem subspaces and results, the 
solution for each problem has the exact same form.  This is a much more important concept for 
the student to master at this stage than the details of the if-else syntax (to be covered below). 
 
The student is now ready to consider in more detail what is required to take an input and perform 
range checking. We characterize the criteria for choosing a subspace (one row in the table) as 
directly relating to an action to be taken for each subproblem.  Each subproblem can be 
described by a condition (boolean expression) that is true for that subproblem and false for any 
other sub problem.  The student now begins to compose the range check condition statements for 
each row based on the ranges for that row (see Figure 6). 
 
 

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

P
age 10.17.13



                 
Input Ranges for 

Raw Input 
Range check as a True/False Condition: 

If input >= range min AND <= range max 
Or 

If input < range min OR > range max 
  0-59 If    input >= 0    AND    input <= 59 
… … 
90-100 If    input >= 90    AND    input <= 100 
<0 or >100 If    input < 0    OR    input > 100 

 
Figure 6.  Composing Range Check Expressions 

 
At this point, the student has an initial grasp of the decision problem schema.  In the full 
presentation, the student will be exposed to a graded series of more complex variations of the 
basic schema described here.  Once the problem schemas have been introduced, the student is 
ready to learn the correlated programming language construct designed to implement program 
solutions for decision problems, specifically the if-else statement. 
 
Program Element Schemas for Decision Problems:  Two-Branch If-Else 
 
We first introduce a simple form of the if-else statement, which corresponds to a decision 
problem with only two subproblems (sometimes call yes/no problems):  

if (condition) {... action statements if true ...} 

 else           {... action statements if false ...} 

An illustration of the if-else structure related to a problem with only two explicitly mutually 
exclusive choices is given next: 
 
• Problem description: determine if an integer is even or odd 
• Problem solution: If the remainder of dividing the input value by two is zero then the result 

is even. Otherwise the result is odd. 
 
We assume the expression Input represents the integer being tested.  We describe the boolean-
valued expression that determines which subspace defines the solution to the problem as the 
expression  Input%2 == 0 which is read “integer remainder after dividing Input by 2 is zero”.  
The mapping from condition to result is given by the following table (Table 3): 
 

Table 3.  Relating an Input to an Action 
Condition Result Action 
Input%2 == 0 is true ‘E’ result = 'E'; 
Input%2 == 0 is false ‘O’ result = 'O'; 

 
Placing these elements into the if-else structure yields: 

char result; 
if (Input%2 == 0) { result = 'E';}    
else              { result = 'O';} 
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Multi-Branch If-Else 
Next we introduce the multi-branch if-else statement: 

if      (condition_1) action_1 
else if (condition_2) action_2 
else if (condition_3) action_3 
... 
else if (condition_n) action_n 
else                  default_action 

 
Once again, we illustrate the way the language structure relates to a decision making problem 
with only explicitly multiple mutually exclusive choices.  
 
• Problem description: Assign a letter grade based on a numerical grade 
• Problem solution: Sequentially check all listed criteria to see if the input value is equal or 

greater than the low range value AND less or equal to the high range value. Once a range is 
found for which the input value meets the criteria, then assign to the result the value 
corresponding to that range.  

 
Next we relate the condition expressions in the if-else structure to the criteria for each grade. The 
criteria are mutually exclusive and involve a compound comparison which yields either a true or 
false result. A single input check condition followed by its corresponding action would have the 
form:  

char result; 
if (Input >= LowValue && Input <= HighValue)   

result = <letter corresponding to grade>; 
 

The complete series of tests with correct range checks and actions is then: 
char result; 
if       (Input >=0  && Input <=59) { result = 'F';}    
else  if (Input >=60 && Input <=69) { result = 'D';} 
else  if (Input >=70 && Input <=79) { result = 'C';} 
else  if (Input >=80 && Input <=89) { result = 'B';} 
else  if (Input >=90 && Input <=100){ result = 'A';} 
else  if (Input <  0 || Input > 100){ result = '?';} 

 
The student can reinforce the solution approach pattern by implementing the corresponding 
solution to other similar problems (Income Tax, Boxer Category, Golfer Handicap). 
 
More material for drilling the student on correct usage of the if-else structure can be developed 
according to guidelines presented above in Section 3.3.  For example, a unit on if-else syntax 
might start with the syntax of the basic two-branch statement: 

if (boolean variable/expression) statement1 
else     statement2 
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This could be followed by illustrative examples of correct syntax usage: 
Given: int amount = 10, positive = 0, negative = 0; 
• single statement1/single statement2   

if (amount > 0)  positive = amount; 
else                    negative = amount; 

• compound statement1/ statement2   
if (amount > 0)  { positive = positive + amount; negative = 0; } 
else                    { negative = negative + amount; positive = 0; } 

Finally, exercises for the student to drill on the syntactic patterns can be provided: 
• Exercise #1:  For each of the if-else variations in the above examples, produce several 

examples of your own.    
• Exercise #2:  Modify some of the correct examples given, to intentionally create both invalid 

and erroneous statements and indicate how erroneous statements will be interpreted. 
 
By the end of this unit, the student will have expanded her problem solving and programming 
schemata to solve and code programming problems involving explicit or implicit mutually 
exclusive decision making (see Figure 7).   
 

 
 

Figure 7.  Solution Schema (for Decisions) + Program Schema = Program 

      
 program code 

char res; 
     if (Inp<=59) {res='F';}    
else if (Inp<=69) {res='D';} 
      . . . . . . . . 
else if (Inp> 100){res='F';} 

char res;
     if(Inp<=120) {res='F';}    
else if(Inp<=160) {res='M';} 
     . . . . . . . . 
else if(Inp<=300) {res='S';} 

char res;
     if(Inp<= 30) {res=Inp*.02;}    
else if(Inp<= 60) {res=Inp*.04;} 
      . . . . . . . . . 
else if Inp> 150) {res=Inp*.10;} char res;

     if(Inp<= 7200.00) {res=0.0;}    
else if(Inp<=12000.00) {res=Inp*.12;} 
      . . . . . . . . . . .  
else if Inp> 22000.00) {res=Inp*.25;} 

_decision making programming schema___
variable declaration and initialization 

          if (condition) action_1 
else if (condition) action_2 
 . . . . . . . . .  
else if (condition) action_n 
else        default_action 

    decision problem solution particulars Student Grade 
criteria results 
  0-59 F 
60-69 D 
. . . . . .  . . . 
90-100 A 

Boxer category 
criteria  results
  1-120 Flyweight 

. . . . . .   . . . . . . . 

201-300 Super  HvyW

Income Tax 
criteria  results 

1.00-7200.00 0.00 
7201.00-12000.00 12% of Inc
 . . . . . . .   . . . . . .  
22001 and above 25% of Inc

Golfer handicap 
criteria results 
   0-30  2% of points 
  . . . . .    . . . . . . . . . 
101-
150

10% of points 

PPRROOBBLLEEMM  SSOOLLUUTTIIOONN  SSCCHHEEMMAA    ++    PPRROOGGRRAAMMMMIINNGG  SSCCHHEEMMAA  ==    PPRROOGGRRAAMM  
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4.2.  Iteration Problem Schema 
 
An iteration problem is a problem whose solution can be described primarily as the repeated 
application of a solution to an associated subproblem.  Each application of the solution of the 
subproblem is called an iteration.  The iterations may be and often are enumerated.  For example, 
if a solution requires n iterations, the individual iterations can be individually identified by 
enumerating them from 1 to n (or sometimes from 0 to n – 1).  The iterations are usually 
executed sequentially in enumeration order on typical computer hardware, but this is not a 
requirement. 
 
We make a distinction for the student between iterations that are independent of the enumeration 
value, and those that are dependent on it.  Even in the case of independent iterations, the 
iterations must still be at least counted in order to determine when to stop. 
 
The novice programmer must master iteration as a fundamental abstraction as a key to achieving 
adequate programming competency.  It is therefore crucial that he first learn to recognize 
problems for which iteration is the primary solution approach.  We identify a hierarchy of 
schemas that are connected by an appropriate gradient of increasing complexity. 
 
The Iteration Schema 
 
In its most basic form, the iteration schema can be described as follows: 
 
Given a complex problem: 
• Identify a more basic subproblem (the base operation) 
• Describe the solution to the original problem as n applications of the solution to the 

subproblem (perform the base operation n times) 
 
At this stage, the student should be focusing on how to read the original problem and infer the 
existence of a more basic easier-to-solve problem.  At this stage, the student should be aware that 
the solution to the basic problem must be performed multiple times, but there should not be too 
much emphasis on quantitative details such as how to count the iterations or how to stop them 
when a limit is reached. 
 
Simple Iteration Schema 
 
The first increase in complexity is to introduce some precision about enumerating and counting 
the iterations, and identifying a limit on how many iterations are required. 
 
• Identify the base operation 
• Identify the number of iterations n 
• Perform the base operation n times. 
• [base operation is independent of the iteration count, order doesn’t matter] 
 
At this step, we emphasize the role played by n, the number of times the base operation must be 
performed to achieve the solution to the original problem.  The iterations are enumerated from 1 
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to n (or 0 to n – 1), but this is not emphasized, since the base operation has no dependency on the 
enumeration value. 
 
Example:  Simple Iteration Schema to Calculate Compound Interest 
 
This is a very popular application of the iteration pattern and is seen in many programming texts.  
The base calculation is simply:  Ending Principal = Starting Principal X (1 + Interest Rate) (see 
Table 4). 
 

Table 4.  Base Calculation for Compound Interest 
Start Prin Int Rate Int Ending Prin 
1000 0.05 50 (=1000 X 0.05) 1050 (= 1000 + 50) 

 
The base calculation gives the value of the account after 1 year of investment.  The iterative step 
finds the value of the account after n years of investment, by simply applying the base 
calculation n times (see Table 5). 
 

Table 5.  “Unrolled” Repetition of Base Calculation for 10 Years 
Year Starting 

Principal 
Int 

Rate 
Interest 

 
Ending 

Principal 
1  $1,000  5%  $   50 (=1000 X .05)  $1,050 (=1000+50) 
2  $1,050  5%  $   52 (=1050 X .05)  $1,102 (=1050+52) 
3  $1,102  5%  $   55  $1,157 

… … … … … 
9  $1,477  5%  $   74  $1,551 

10  $1,551  5%  $   78  $1,629 
 
The student may need to be shown that in the repeated calculation, the starting principal for each 
step is copied from the ending principal from the previous step.  The schema that captures this 
computation is as follows: 
 
Given 
 Starting Principal SP 
 Interest Rate R 
 Base Computation is “Ending Principal EP = Starting Principal X (1 + Interest Rate)” 
 No. of Years N 
Do the Base Computation N Times 
 EP = SP X (1 + R) 
 SP = EP 
Answer is EP = total value of investment after N years 
 
In order to adapt the base computation to an iteration, the ending principal from the previous 
computation must become the starting principal for the next computation.  With the base 
computation defined in this way, the values of the enumerations of the iterations (in this 
example, the “year” column) do not directly enter into the computation of the interest, but the 
student should notice that the year value is still relevant to the behavior of the iteration.  It is the 
value of the year reaching a limiting value that causes the table to end at the row for year 10. 
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In other words, the value of the year column is introduced into the schema as the iteration 
counter.  The schema then simplifies to: 
 
• Set year to 0 
• Do the base computation for each value of year from 0 to 10 

o EP = SP X (1 + R) 
o SP = EP 

 
The Counter and Accumulator Schemas 
 
At this stage, we become more explicit about the enumeration value and introduce a symbol or 
variable, called the counter, to represent it (traditionally, names such as “i” “j” “k” are picked, 
but this is not a requirement).  In addition, we introduce the idea that the counter must be 
explicitly incremented as a way for the schema to dynamically keep track of how much work has 
occurred.  The counter counts from 1 to n, allowing the iterations to each be enumerated.  As 
mentioned earlier, the steps in the iteration must be performed sequentially in time.  The counter 
schema still executes the base operation n times, but the iterations can now be distinguished from 
one another by the value of the counter.  The iteration for which the counter has value 1 will 
usually be performed first, then the iteration for which the counter has value 2, and so on until 
the counter has value n.  It’s not always required to execute the iterations in the order 1 to n, but 
this is usually done, if for no other reason than it’s usually the easiest to implement. 
 
The schema is now: 
• Identify the base operation 
• Identify the number of iterations n 
• Identify the counter and initialize it to 1. 
• Perform the base operation n times, with the counter value increased by 1 each time. 
 
To describe the accumulation pattern using summation notation, it is customary to identify the 
values with a subscripted variable.  In computer programming, subscripted variables are usually 
implemented as arrays.  The discussion of arrays is deferred in the current paper, although the 
treatment of problem and program schemas for arrays is a worthwhile area for future 
development. 
 
We can then describe the accumulator schema as the counter schema augmented by an 
accumulator.  The accumulator represents a value that is incremented by the base operation for 
each iteration.  It is initialized to zero, and each iteration performs a computation whose result is 
added to the accumulating value.  This pattern is useful for describing the calculation of any 
mathematical expression that is described in summation notation.  To define the accumulator 
schema, we add another symbol to represent the accumulator, and we use the value of the 
counter as the subscript value.  The general schema then looks like this: 
• Initialization:  initialize the accumulator to zero, and the counter to 1 
• Base operation:  compute the ith value (where i = the value of the counter), add it to the sum, 

and increment the counter by 1. 
• Iteration step:  perform the base operation n times. 
• Result:  final value of the accumulator 
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Example:  Simple Series Approximation for π:  4*(1 – 1/3 + 1/5 – 1/7 …) 
 
The solution to this problem is an example of the accumulator schema.  The computation during 
each iteration depends on the iteration’s enumeration value.  As with any computation 
expressible in summation notation, it will be helpful for the student to: 
• Place the terms of the expansion in one-to-one correspondence with the enumeration values 
• Derive an expression for the general term as a function of the enumeration variable i. 
• Describe how the accumulation schema can be applied to calculate the final result. 
 
As with any nontrivial computation being presented to a novice programmer, the instructor 
should make sure that the student knows what the computation looks like before proceeding to 
any higher level of abstraction.  A tabular presentation is a good way of “unrolling” or tracing 
most iterative computations that do not involve any detail (at this point) on how the computation 
will be performed on the computer (see Table 6).  The student should be encouraged to calculate 
several terms in “pencil-and-paper” mode to gain confidence that the computation is not difficult 
to understand and is ultimately just a series of arithmetic operations, applied according to a 
precise recipe or algorithm. 
 

Table 6.  Illustration of the Iterative Computation of the π Series 
i 1 2 3 4 5 6 7 … 
term +1/1 -1/3 +1/5 -1/7 +1/9 -1/11 +1/13 … 
sum 1.00000 0.666667 0.866667 0.72381 0.834921 0.744012 0.820935 … 
4 X sum 4.00000 2.666667 3.466667 2.895238 3.339683 2.976046 3.04184 … 

 
The next level of inference is to guide the student in the derivation of the general term as a 
function of the enumeration i.  Since the first term is positive and the first term has an 
enumeration value of 1, the correct expression for sign is (–1)(i + 1).  The student should then 
note that, ignoring the sign, each term is the reciprocal of the next odd integer, so the general 
term as a function of i is  1/(2 * i – 1)  Combining this with the expression for sign yields 
a general term of  (–1)(i + 1) * 1/(2 * i – 1) 
 
Substituting this base calculation into the accumulator schema then gives: 
• Initialization:  initialize the accumulator to zero, and the counter to 1 
• Base operation:  compute (–1)(i + 1) * 1/(2 * i – 1), add it to the sum, and 

increment the counter by 1. 
• Iteration step:  perform the base operation n times. 
• Result:  final value of the accumulator 
 
A final step for this particular series is to either multiply each term by 4, or multiply the final 
result by 4, since the series is an approximation for pi/4.  The instructor can decide which is best 
for the student. 
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Programming Schemas 
 
Once the student has had some practice with several examples that illustrate the common pattern 
of the iteration and accumulator patterns, he is ready to explore the related programming 
language constructs designed to simplify the implementation of the iteration schema in a 
computer program. 
 
Schema for Counting with a While Loop 
 
• Determine the base computation. 
• Let n represent the number of iterations required to solve the problem 
• Let i represent the enumeration value for the iteration. 
• If i <= n then 

o Perform the base computation 
o Increase the value of i by 1 

 
Schema Implemented with a While Loop 

int n = 10; // set limit 
int i = 1; 
while (i<=n) { 
 // Perform the base computation here … 
 i = i + 1; 
} 

 
Schema Implemented with a For Loop 

int n = 10; // set limit 
for (int i=1; i<=n; i++) { 
 // Perform the base computation here … 
} 

 
To complete the unit, the student must integrate the solution schemas with the program schemas 
to produce a complete program to solve that specific problem (see Figure 8).  As was illustrated 
in the previous section on decision problems, the instructor should emphasize how the problem 
schema serves as the common pattern that underlies the program solution to a class of similar 
problems. 
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Figure 8.  Solution Schema (for Iterations) + Program Schema = Program 
 
 5.  Conclusion 
 
Need for a New Teaching Approach for the CS1 Curriculum 
 
College-level CS educators are under increased pressure today to determine the causes of the 
perceived high failure rate in CS1.  Assessment and accreditation activities are increasingly 
metrics based, and CS departments are expected to collect and analyze data on student 
achievement of learning objectives, and take corrective action if goals are not met.  Although 
hard data is still lacking, many CS educators are suggesting that the current CS1 teaching 
approach needs to be adjusted to meet the needs of the current audience of novice programmers.  
This paper agrees, and we have focused on examining current methods (syntax-driven) and 
suggesting new ones (schema-driven). 
 
Root Causes of the Problem 
 
Today CS is a popular academic major, yet the CS teaching approach is not mature, compared to 
other math, science, and engineering disciplines.  This is understandable, since many CS 
educators did not graduate with a degree in CS (such departments only began to appear in the 
late 1970s to early 1980s).  The early student audience for the CS curriculum was composed of 

      
e program cod  

int i; 
for(i=1; i<=n; i++) 
    { P = P * (1+R); }  

    Simple Iteration problem solution 
schema Compound Interest 

_Simple Iteration  programming schema___
variable declaration and initialization 

          for(i=1; i<=n; i++) 
 { base action steps  }

Num.  of 
Iterations 

       base step 

     'n' P = P *( 1+R) 

Factorial 
Num.  of 
Iterations 

base step

     'n' F = F * i  
i = i + 1 

Approximation for ∏ 
Num.  of 
Iterations 

          base step 

      'n' A = A + (-1)^(i+1)  * (1/2*i-1)
i=i+1 

int i; 
for(i=1; i<=n; i++) 
    { F = F * i; } 
 

int i;
for(i=1; i<=n; i++) 
    { A = A * + (-1)^(i+1)  * (1/2*i-1); } 
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bright self-starters who mastered the material on their own, regardless of the teaching method, or 
in the absence of any method at all.  Today, in contrast, students are no longer exclusively an 
elite who learn on their own without a method or approach.  Abilities and aptitudes span the Bell 
curve.  Current textbooks have not caught up to this reality yet, and they proceed from an 
inaccurate model of what a true programming novice knows or does not know.  Specifically, 
textbooks greatly overestimate the novice student’s problem solving skills, assuming that they 
have already mastered sophisticated problem solving strategies.  Many of these texts do not teach 
such strategies, and focus instead on the presentation of the syntax of programming language 
constructs, using problems as illustrations. 
 
Another modern phenomenon that calls for an adjustment in the current teaching approach is the 
apparent low quality of cognitive skills that the current generation of young novice programmers 
brings with them to CS1. This is popularly blamed on exposure to today’s high-speed, short-
attention-span entertainment and activities.  Cognitive psychologist Elliot Soloway refers to 
young college students as the “Nintendo or MTV generation” and notes that the students' 
perception of technology and media has been profoundly influenced by these sources. He also 
concludes that current failure rates for CS1 "… echo our research from 15 years ago, so it’s not 
clear we ever have figured out how to teach programming…". 10

 
New Approach Based on Cognitive Learning Models 
 
In order to propose a new approach, we took as our starting point well-known results from 
research in cognitive psychology on how students learn and acquire skills.  The results show that 
all learners use short-term and long-term memory in characteristic ways, and that each type of 
memory works with its own learning mechanisms.  We applied these well-known results to the 
specific problem of creating a methodology for teaching programming to novices.  We 
concluded that existing approaches depend almost exclusively on the mechanisms of the 
student’s short-term memory (the syntax-driven approach), having them memorize collections of 
facts about the syntax of the programming language.  In this approach, the student is apparently 
expected to infer sophisticated problem solution patterns on their own.  In contrast, we conclude 
the ability to recognize problems as belonging to class of problems with known solution patterns 
is what the student should be taught (the schema-driven approach), rather than assuming the 
student already knows it.  Attention to language syntax comes later.  In fact, memorization of 
syntax is worthless to the student, unless they have first acquired the problem and solution 
schemas to which these programming language facts can be anchored. 
 
Preliminary Results 
 
Ungraded homework exercises designed using the schema-driven approach have been presented 
to students of the CS1 course given at CSUN during the Spring and Fall 2002 semesters and the 
Spring 2003 semester. It is inconclusive whether these exercises improved the students’ ability to 
complete their programming projects. To perform a more controlled evaluation with quantitative 
data, a closer coordination between lecture and lab material would be implemented.  In addition, 
homework exercises would have to closely follow the lecture presentation of the material, a 
percentage of the final class grade would have to be assigned to the exercises, and the exercises 
would have to be graded, evaluated and correlated with the student overall performance. 
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In the meantime, we have strong anecdotal feedback that many students had a positive 
perception of the benefits of the exercises. During informal exchanges, students with no previous 
programming background who completed the assigned homework units reported that doing the 
exercises made it easier for them to code the assignments. Other students with some prior 
programming background reported that just doing a few exercises was sufficient to grasp the 
syntax for a particular language component. Still others, mostly novices, who complained of 
having problems with the programming assignments, candidly revealed that they either did not 
have the time, or thought it was not necessary to do the exercises or found the exercises boring. 
Our observations align closely with reports on experiments from the literature 12.  
 
Ideas for Future Work 
 
We hope to conduct controlled studies in the future in order to assess the validity and level of 
benefit of the schema-driven methodology. The results and feedback from these studies would 
further illuminate the design and organization of the curriculum. The studies would test the 
hypothesis that novice programmers learning to program will demonstrate better problem solving 
and coding abilities when the schema-driven methodology is used in preparing the presentation 
and designing the examples, exercises and programming projects. The experiment would include 
an experimental group—those that would be taught using the schema-driven approach—and a 
control group—those taught using the syntax-driven approach. Ideally, the two groups should be 
composed of students whose skills and backgrounds are relatively balanced and homogeneous. 
We feel confident that the results should show better performance for the experimental group.  It 
is our hope that this paper will assist the efforts of other Computer Science educators in their 
common quest for finding the right answer for how to teach programming to today’s novice 
programmers. 
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