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A Comparison of Platform Configurations for Robotics 
Development using ROS2, Raspberry Pi, and Webots 

 

Abstract 

Background: The field of robotics continues to expand with new, progressive technologies. The 
vast ecosystem of robotics, with its countless routes, is initially challenging to navigate. It is even 
more so during a season of virtual instruction. Creating strategic entrance points for the incoming 
students merits consideration. 

Purpose: Our aim is to provide a way for students to explore three critical areas in robotics: the 
physical robot (hardware), the simulated robot (digital twin), and the operating system and code 
(controller). 

Method: We explore options for integrating two advanced robot development frameworks (i.e. 
Robot Operating System 2 (ROS2) and Webots) in combination with the widely used beginners 
computing platform (i.e. Raspberry Pi) to facilitate introducing students to the field of robotics, 
while also providing them a path to advanced robot topics.  

Results: Two configurations for integrating ROS2, Webots, and the Raspberry Pi are presented. 
The advantages and concerns for each are discussed, along with pointers for mitigating concerns.   

Conclusion: The integration of these frameworks and platform, along with virtualizing the 
physical robot as a digital twin, opens a gateway for students to enter the field of robotics.  We 
also envision our ideas supporting paths for improving online distance learning, developing robot 
networks, and reducing field testing time. 

Keywords: Digital twin, embedded systems, online robotics education, simulation, virtual 
instruction 

 

1. Introduction  

1.1 Incentive 

Robotics has proven to be an attractive and powerful way to teach the fundamentals of 
engineering, hardware systems, and coding (Liang-Yi Li, 2009). It is hands-on and provides 
instant feedback, encouraging exploration through trial and error. Perhaps more importantly, in 
the marketplace, embedded systems and Internet of Things (IoT) technologies are flourishing, 
indicating huge amounts of data will be continuously gathered. Subsequently, there must be 
applications for this data. In the future, hopefully, this information will be processed and used by 
an automated service provider which can take many forms, robotics being a primary option 
(Batth, Nayyar, & Nagpal, 2018). The global robotics industry is growing at a compound annual 
growth rate in the teens or greater. (Tobe, 2017).  

 



 

1.2 Purpose 

With robotics and embedded systems holding promise for the fundamentals and the future, it is 
advantageous to find new and innovative methods to teach and to foster interest in the field 
(Gennert & Putnam, 2018). In pursuit of developing a foundational appreciation of and 
competency using embedded systems via robotics for engineering students, a practical 
arrangement of three modern robotics platforms is being investigated with an emphasis on 
distance learning. With the challenges of virtual classes being universally felt, each platform 
must demonstrate capacity for distance learning and continued exploration. Taking steps to 
utilize simulation when face-to-face instruction is not viable is a driving objective in this 
research. 

1.3 Educational Context 

The educational context for this study of robotics platforms is the Introduction to Embedded 
Systems course in the Department of Electrical and Computer Engineering at Iowa State 
University. The 200-level course is required for computer, cybersecurity, and electrical 
engineering majors, and for software engineering, it is one of two courses students choose from 
to fulfill a requirement. Students learn about embedded systems concepts and design using a 
robotics platform in the laboratory. The mobile robot in the lab is built around the iRobot Create 
2 (Roomba). 

The course introduces students to hardware and software aspects of embedded systems including 
microcontrollers, memory-mapped input/output, input/output interfaces, embedded programming 
in C, initialization and configuration of peripherals in software, general purpose input/output 
(GPIO) ports, polling and interrupt processing, serial communication (UART), analog-to-digital 
conversion (ADC), hardware timers (GPTM), input capture, pulse-width modulation, sensors, 
servo motors, mobile robots, and object detection. The first third of the course covers 
foundational concepts and skills; the middle third, understanding and using microcontroller 
peripherals (GPIO, UART, ADC, GPTM modules); and the final third, implementing a project in 
the lab for an autonomous vehicle application. The course has three lecture hours and two lab 
hours each week. The weekly labs are guided by undergraduate and graduate teaching assistants. 
The lecture and lab content and flow are highly integrated. The final project is introduced early 
in the semester and phased in through class and lab activities prior to exclusively working on it 
in lab. 

The mobile robot in the lab can be controlled with Open Interface commands from a Texas 
Instruments LaunchPad microcontroller board to the Roomba robot. The microcontroller board 
interfaces to input/output devices added to the robot, including an infrared sensor, ultrasonic 
sensor, and servo motor (used to get scans of sensor readings). The entire robotics platform is 
referred to as the CyBot (named after the Iowa State Cyclones) and is shown in Figure 1.  

 



 

 

Figure 1: CyBot robotics platform in the Introduction to Embedded Systems course. 

In the final project, teams program the microcontroller to move the robot through a test field and 
avoid obstacles to reach a destination. Teams have the option to select a design problem for a 
Mars rover autonomous vehicle application, in which the primary task of the rover is to navigate 
through hazardous terrain to a retrieval zone where it will send data to mission control. The 
design criteria for the Mars rover application are predefined as shown in Table I. 



 

TABLE I.           Design Criteria for the Mars Rover Application 

Criterion Description 

Reach goal Find and stop in the zone where it can transmit the data it has 
collected. 

Object detection Detect surface objects, such as boulders and stalagmites, to avoid 
collisions and damaging components. 

Boundary 
detection 

Identify the boundaries of the “safe zone” to stay within areas with 
safe levels of solar radiation. 

Object/boundary 
avoidance 

Avoid objects it has detected and identified to limit damage. 

Information 
display 

Display information in a form that is readable to humans who are 
controlling and monitoring its activities. 

Vehicle 
communication 

Receive commands from mission control. 

Reach goal 
quickly 

Navigate the course and reach the goal area within a time limit so that 
it does not miss the transmission window. 

Autonomous 
movement 

Make decisions about movement without human commands (in case 
commands cannot be received). 

Object 
identification 

Determine the type of object it has detected to help determine how it 
will avoid the object. 

 

With recent revisions to the course, students have more options and responsibility in project 
selection and management. More information about the redesign of the course project is found in 
(Rover, Fila, Jones & Mina, 2020). 

In the midst of spring semester 2020, the COVID-19 pandemic made it infeasible for student 
teams, teaching assistants, and professors to safely work together in an in-person lab 
environment.  In response, a high-fidelity virtualized CyBot platform was developed later in the 
semester, spear-headed by a senior in our department as an extension to their senior design 
project (https://sdmay20-04.sd.ece.iastate.edu).  The virtualized platform is shown in Figure 2. 
There are two TI LaunchPad boards, i.e., the red boards in the figure. The board on the right is 



 

programmed by students and acts as the controller as in the physical CyBot. However, without 
the physical CyBot, the rest of the system is virtualized, and the board on the left mimics 
components such as the sensors. 

 

 

Figure 2: Virtualization of the CyBot platform. 

The realism of the virtualized CyBot is such that embedded applications developed for the actual 
CyBot can be deployed to the virtual CyBot with no modification.  The timing of this 
microcontroller-implemented virtualized Cybot is such that students can use an oscilloscope to 
probe sensor and actuator signals in real-time.  The virtual CyBot platform was piloted with 
students in summer 2020, and continues to be used in fall 2020 to give students a fully remote 
infrastructure for developing and evaluating their embedded applications.   Figure 3 shows a side 
by side comparison of the actual CyBot operating within a test field next to the virtual CyBot 
operation within a virtual test field. 



 

 

Figure 3: (Left) CyBot robot operating in a test field. (Right) Virtual CyBot in a virtual test field. 

 

In effect, the need for a virtual lab platform due to COVID restrictions on in-person lab 
instruction has resulted in additional options to support hands-on learning of embedded systems 
and mobile robots. The virtual CyBot offers a digital twin of the physical CyBot. This opens new 
opportunities for learning. Consequently, we initiated the study presented in this paper to explore 
other robotics platform configurations with similar virtual capabilities. 

 

2. Background and Related Work 

2.1 State of Robotics Education and Robotics in Embedded Systems Courses 

As mentioned in section 1.1, robotics is an effective way to motivate the next generation. 
Utilizing robots does not have to be confined to elementary classrooms or specialized robotics 
courses. In electrical and computer engineering embedded systems and microcontroller courses, 
using autonomous robots has been shown to improve students’ comprehension of the essential 
concepts (Lessard, 1999). “When teaching advanced courses in microcontroller theory it is 
difficult to teach advanced concepts such as real time operating systems, multiple interrupts, 
fuzzy logic, and structured design techniques. Part of the difficulty is that a lot of the finer details 
of these concepts are not readily visible to the students. If paper exercises are used to illustrate 
these concepts, students often view them as esoteric, obtuse, and dry.” (Beavis, et al., 2005) 
Texas A&M found success in strategies such as adopting a common microprocessor throughout 
a sequence of classes and providing students freedom in their robot’s goals and design and is still 
investigating educational impacts and integrating industry trends. (Hur, Goulart, Porter, Sarker, 
& Willey, 2020). 

2.2 Simulation and Distance Learning 

The virtual classroom presents its own set of challenges. In robotics-based courses this is 
markedly felt, as their primary advantage lies in the hands-on and visual feedback components. 
Drushel & Gallagher have identified and listed a number of issues when teaching robotics 
courses online. These include communication challenges, restrictions on hardware design (they 
had previously been letting students design their own robots, but switched to a fixed hardware 



 

for simulation purposes), and a necessary switch to a more difficult coding language. (Drushel & 
Gallagher, 2008). Robotics classes have been flipped with positive results. At Rose-Hulman their 
flipped class was evaluated similarly favorable to their traditional class (Berry C. A., 2017). 
However, they still had the hands-on robot component. Many of the communication challenges 
documented in online robotics courses are common within many virtual classrooms. Conversely, 
the issues specific to robotics in many virtual classrooms could stem from trying to force a face-
to-face curriculum to an online platform. Perhaps a whole new approach is needed, starting with 
a focus on developing the simulation component. 

2.3 Webots 

Webots is a robotics simulation software with an intuitive and straightforward interface. The 
application, made open-source in 2018, offers the capability to contrive a customized robot 
simulation. Webots is interactive, allowing the user to apply forces while running a simulation, 
and has a wide variety of environments built-in, including: indoor, outdoor, water, and sky. 
Webots’s primary advantages over other similar simulators is its physics engine, graphics 
rendering, and extensive libraries of sensors and actuators that make building and testing robots 
realistic and accessible (Micheal, 2004). Further, the simulation progresses via a virtual clock so 
time can be sped and slowed if desired. Webots is widely used in academia and industry from 
everything from biomedical micro-robots (Guo, Zhang, FAIMBE, & Man, 2012) to refining 
production line sorting (Pan, Ma, Mu, An, & Chen, 2018). Webots has a curriculum based on the 
e-puck robot. Analysis and feedback of this curriculum has show that Webots has potential to 
create an educational and explorative environment (Guyot & Rohrer, 2011) 

2.4 The Robot Operating System 

The Robot Operating System (ROS) is a light, open-source framework developed to standardize 
internal and external communication between robotic components (Quigley, et al., 2009). It 
consists of a group of libraries and packages for building reusable, language-independent robot 
applications. It utilizes peer-to-peer communication of specified nodes such as publisher, 
subscriber, service, and client nodes. It runs on top of a Linux Ubuntu operating system. 
Extensively used throughout education, research, and industry, ROS is moving toward becoming 
a standard in Robotics (Su, 2019). The ROS community and ecosystem is substantial, providing 
extensive coding and problem-solving support. A main asset of ROS is that it adds a single layer 
of abstraction, allowing a user without specialized technical skills and knowledge to approach 
advanced projects without limiting capability. It has been found to be an effective approach to 
teaching robotics concepts (Wilkerson P.E., Forsyth, Sperbeck, Jones, & Lynn, 2017). 

ROS2, released in 2017, is an improved version of ROS, boasting greater robustness from 
changes in the fundamentals of the framework.  

2.5 Raspberry Pi 

Raspberry Pi, a minicomputer originally made for educational purposes, is now widely used and 
recognized. It is small, affordable, and adaptable making it a good entry-level option for IoT 
embedded systems (Meruje, 2018). Builds of the Raspberry Pi come with a range of ports and 



 

connectivity including USB, HDMI, GPIO pins, Ethernet, CSI, and others. This gives the Pi user 
the ability to customize peripherals. Most notable are the GPIO pins, which allow a range of 
sensors and hardware to interface with the Pi.  

2.6 Benefits of ROS2, Webots in confluence 

Both ROS2 and Webots are powerful platforms that are used in cutting-edge areas of research 
and industry (Webots: Robot Simulator, n.d.). Their potential makes them an ideal 
software/framework for the future robotics engineer to work with. Starting in robotics with 
platforms geared toward beginners is a popular option and has its many advantages. However, 
the learner will eventually be constrained by software and/or hardware limitations such as 
expense, capability, or too many layers of abstraction. Moreover, many beginner robotics sets 
leave scarce room for creativity in that they are overly “boxed”, that is, they provide step-by-step 
instructions and vision for the final product and offer few tools for creative deviation. ROS and 
Webots can work in tandem with any chosen hardware, if any hardware is desired at all, and do 
not limit creative capacity as they provide the building blocks rather than a start-to-finish “kit”. 
For the entry-level learner, it could be initially challenging to learn these advanced applications. 
However, with the right configuration, a learner can advance without switching platforms. 
Additionally, the student will gain a deep knowledge of robotics simulation and ROS, which may 
open doors in research and industry. Investigating ROS and Webots with the intent to use them 
in an embedded systems classroom is a unique approach as far as our background research 
suggests.  

 

3. Methods and Configurations 

3.1 Preliminary Notes 

When starting with ROS2, the Raspberry Pi is a beneficial selection for an onboard computer. In 
addition to the advantages listed in section 2.3, it has the capability to run the Linux kernel and 
the Ubuntu flavor of Linux which creates the option to run ROS2 directly on a robot versus 
running ROS2 externally. Each configuration has its advantages as explained in the next few 
sections.  

3.2 ROS2 on Raspberry Pi 

Running ROS2 directly on the Raspberry Pi, in addition to running ROS2 with Webots on an 
Ubuntu machine (desktop/laptop/virtual), is the more intuitive option within the structure of 
ROS. When ROS is operating on the Pi each attached peripheral can be treated as an individual 
node, creating a well-defined, distinct structure. Furthermore, the intelligence can be coded and 
executed directly on the Pi. This provides the option to run the robotic device either connected or 
independent of another Ubuntu-ROS machine.  

The Webots simulation is built on and run from an Ubuntu-ROS desktop/laptop/virtual 
environment and controlled via the external controller option in the Webots application. By 
cloning the robot’s ROS workspace from the Pi to the computer running the Webots simulation 



 

and changing the robot’s driver functions in the controller code to Webots specific functions, a 
cross-compilation type system could be developed. This process is made more feasible when 
referring to the cross-compilation examples and documentation provided by Webots (Transfer to 
Your Own Robot - Webots documentation, n.d.). The webots_ros2 package should be cloned 
from the Cyberbotics repository into the ROS2 workspace on the computer, and the files should 
be organized and written in accordingly. With this system in place, the simulated robot and the 
physical robot should behave most similarly (with respect to the platform) because of the way 
both ROS and Webots structure a robot. See Figure 4. 

 

Figure 4: Configuration 1 details, the ROS network, and significant nodes. 

 

3.3 ROS2 on Ubuntu Machine with Alternate Operating System on Raspberry Pi 

Running ROS2 exclusively on an Ubuntu machine while installing an alternate operating system 
on the Raspberry Pi provides the option to make use of common Raspberry Pi libraries and the 
prewritten controller code that often accompanies beginner’s robotics kits. This configuration 
eliminates the need for writing robot specific driver code, which offers a quicker route to 
experimentation with the physical robot. All communication can be sent or received within a 
single ROS message for each of the sensors or actuators respectively. The message containing 
the robot data is transmitted into the ROS workspace. Then the controller code, data collection, 
analysis, and similar services and clients can execute and publish to a single return message 
function. Although this approach is efficient, executing the intelligence directly from a single 
incoming input does not fully utilize the framework of ROS as there is no clear robot structure 
when all the devices are lumped into one node. Further, it was found that the sending/receiving 
of the message is difficult to replicate in Webots because modifying the included prewritten code 
to be compatible within Webots required inspection of each applicable script and replacement of 
device drivers with Webots functions. 



 

In response to these issues another layer of abstraction could be introduced, dividing the message 
between pseudo devices, nodes within the ROS workspace that publish/subscribe to a single type 
of data replicating how a device would perform within ROS as if ROS was running on the Pi. 
Essentially a simulation of the previous configuration on a PC, it uses the ROS structure making 
it easier to link to the Webots simulation and provides a more basic arrangement of ROS for 
beginner students. See Figure 5. 

 

Figure 5: Configuration 2 details, a TCP client/server network, and significant nodes. 

 

3.4 Installation Procedure 

The installation of the software and necessary packages was found to be a complicated process 
as there is a diverse depth of documentation belonging to each package. It is anticipated that 
when distance learning, the confusion will be amplified by the nature of the situation. Further, 
students have varying degrees of experience with Linux and Raspberry Pi. A step-by-step 
instruction set for each platform used was created to provide clarity to this process. Additionally, 
a virtual machine image can be created with the necessary software preinstalled with optional 
preprogrammed examples.  

 

4. Results 

The resulting prototype of the simulation model in Webots is shown in Figure 6 based on a 
physical tank robot.  



 

Figure 6. Prototype simulation model and physical robot. 

 

While neither configuration (in figures 4 and 5) is necessarily better than the other for beginning 
level and distance learning education purposes, each has its advantageous. Further, the pairing of 
ROS2 and Webots is not limited to these configurations, packages, and communication 
protocols. There are many arrangements in connecting ROS and Webots for education not 
detailed in this report. 

The specific connections constructed in this research were found to have various obstacles whose 
solutions are described in the following and reflected in Table II. Firstly, Webots runs most 
reliably with an NVIDIA or AMD OpenGL graphics adaptor. Neither Oracle nor VMware free 
versions, which were the virtual machine platforms utilized during this project, support Webots’s 
graphics preference. This was found to have minimal effect on the performance of the simple 
simulations if the rendering options were adjusted. For heavier simulations, it would be 
advantageous to host directly on a Linux machine or create a remote connection to one. 
Secondly, the prevalent GPIO library for Raspberry Pi is no longer receiving support. 
Consequently, prewritten code cannot be reused within the ROS framework. There is a release 
which works on Ubuntu 20.04 but not for 18.04 which was used in this research. ROS2 releases 
a version compatible with Ubuntu 20.04 which can be used in substitution with little impact, or 
all GPIO and driver code can be written from scratch/using alternate libraries. Third, it was 
observed that ROS2 and Webots often have complications in connecting when installed 
separately. Using the webots_ros2_desktop package is a reliable way to smoothly use the two 
jointly. 

 



 

TABLE II.          Comparison of key elements in proposed configurations. 

 

5. Conclusions 

In this work, we have presented several approaches for introducing students to the field of 
robotics with an eye toward online distance education.  A mature Introduction to Embedded 
Systems course was described, and in response to the COVID-19 pandemic the path taken to 
deploy a fully remote virtualized version of its core experiential platform (i.e. CyBot) was 
discussed.  An exploratory look at several state of the art robot development technologies 
(ROS2, Webots, Raspberry Pi) was given for developing an approach to introduce students to 
robotics in a manner that is approachable for students, while not limiting those who want to 
explore advanced aspects of robotics.  As part of this exploration, recommendations were given 
with respect to concerns to keep in mind, and mitigation advice was offered. 
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