
AC 2012-3766: A COURSE FOR DEVELOPING PERSONAL SOFTWARE
ENGINEERING COMPETENCIES

Tom Reichlmayr, Rochester Institute of Technology

Tom Reichlmayr is an Associate Professor in the Department of Software Engineering at the Rochester
Institute of Technology. Prior to transitioning to his academic career, he worked as a software engineer in
the process automation industry in a variety of roles over a span of 25 years. His teaching and research
interests include the development of undergraduate software engineering curriculum, especially at the
introductory level. Of primary interest is the study of software development process and its application to
course curriculum and student team projects

Prof. Michael J. Lutz, Rochester Institute of Technology

Michael Lutz is a professor of software engineering at the Rochester Institute of Technology, where he
founded the first undergraduate software engineering program in the United States in 1996. His profes-
sional interests include software engineering education, formal methods, software design, and engineering
concurrent software systems.

c©American Society for Engineering Education, 2012

P
age 25.33.1



A Course for Developing Personal Software Engineering Competencies 

 
Abstract 

The strength of a software development team is the sum of the capabilities of each individual 

team member. There exist at the personal level core software engineering competencies that need 

to be cultivated to allow an individual to fulfill their potential as an effective team contributor. 

Students in a course introducing team based software engineering typically possess adequate 

introductory programming skills, but often lack other competencies required to execute a 

software project successfully. Students have rarely been introduced to concepts beyond 

programming, such as estimation and planning, continuous integration, detailed design, 

debugging and unit testing. Part of being a software engineer is the knowledge of multiple 

programming languages and tools; without such knowledge it is impossible to make intelligent 

engineering decisions.  

 

Contemporary education philosophy stresses active student initiative and personal responsibility 

learning. In our case, with a rapidly evolving technology landscape, students must come to 

realize that, as in the workplace, many skills are not so much taught as learned. This paper 

captures our experiences with a second year software engineering course designed to address 

these challenges. In addition to discussing the topics covered in the course we also present active 

and cooperative learning practices utilized in class activities. 

 

 

Introduction 

Our undergraduate software engineering curriculum incorporates team-based activities in all 

upper-division courses, as the ability to work effectively on teams is a critical aspect of software 

engineering practice. Effective team participation, however, assumes basic engineering 

competence on the part of each team member. The goal of this course is to both enhance and 

assess each student’s individual technical skills in preparation for the team-based courses that 

follow. The Personal Software Engineering course (SE350) covers individual software 

construction skills: planning, detailed design, programming, debugging and unit 

testing.  Software construction is the central activity guaranteed to happen on every project.[xx] 

As such, the quality of the construction substantially affects the quality of the software, and 

knowledge of construction principles is essential whether you are engaged in construction or are 

responsible for another phase of the project (architecture, requirements elicitation, quality 

assurance, maintenance, etc.). 

Part of being a software engineer is knowledge of multiple programming languages; without 

such knowledge it is impossible to make intelligent technology tradeoffs. What is more, the 

language landscape evolves rapidly over time, so the ability to learn and apply new languages is 

an essential skill. The two languages we use are C and Ruby; we do not expect students to master 

either language by the end of the term, but to demonstrate competence with the core concepts in 

each. 

Why C? Well, C was one of the earliest high level languages to support efficient use of computer 

resources. In addition, C is the progenitor of a whole host of C like languages, of which Java is 

P
age 25.33.2



the most popular current example. This means we can focus on the unique aspects of C, 

particularly memory management and pointers, without having to spend much time on concrete 

syntax for loops, conditionals, expressions, etc. C is also the immediate ancestor of C++, the 

current language of choice when efficiency and direct access to hardware is critical. Those who 

eventually move on to engineer real-time and embedded systems will find C and C++ are 

pervasive in those domains. 

We selected Ruby since dynamic languages like Ruby and Python have established themselves 

as excellent tools for scripting, rapid prototyping, and flexible development where raw efficiency 

is not a priority.  Ruby also has a rich set of defined classes which support the development of 

concise, clear object-oriented applications. As our students were arriving at our course with a 

year of Java object-oriented experience already under their belt, we only needed to spend 

minimal time in the review of object-oriented principles before turning them loose in the Ruby 

environment.  

Ruby is also the base for the web application framework Ruby on Rails. The section of the 

course devoted to Rails provides the opportunity to introduce relational database systems and 

web application components such as object to relational mapping. We also included this subject 

material as we had no other required course which directly addressed web or database 

applications. At minimum, the use of Rails armed our students about to begin co-op with at least 

basic knowledge of how web or database applications work. It also turned out that this brief 

introduction to Rails sparked the beginning of a number of individual student projects both inside 

and outside of the department. 

Background 

The students enrolled in our Personal Software Engineering course are in their second year and 

have already completed one year of a typical introductory computer science sequence (CS1-CS3) 

using Java. Prior to the creation of SE350, our Software Engineering students would take an 

additional Computer Science course (CS4) which dealt exclusively with C++. We found that our 

students emerged from this introductory programming sequence as knowledgeable programming 

tacticians, but lacking in good software construction habits. As students entered our sequence of 

Software Engineering courses, they were placed in project teams where the sometimes 

unbalanced distribution of programming tasks left them with limited opportunity to practice or 

refine their software construction skills. As a department we looked for an alternative course to 

CS4 that would allow us to engage our students sooner in their development as programmers so 

as to provide a means of personal assessment and help establish fundamental software 

engineering skills.  

 

Classroom Environment 
A section of SE350 enrolls a maximum of 40 students with one instructor and one upper division 

student as a course assistant.  Classes are two hours in length and held twice a week in our studio 

labs, with one PC per student. Students are organized into groups of four; we used a “playing 

card” distribution to determine the groups so that for example, a class of 40 would have 10 

groups (Aces, Ones, Twos, etc.) and each student in the group would be assigned a suit (spade, 

heart, club, diamond). [10] We enforce a strict pair programming [11] policy during class 

activities, but we rotate pairs within the group by announcing pair assignments for the day as 

P
age 25.33.3



“diamonds and spades” or “hearts and clubs”.  The same organization also supports active 

learning exercises such as “jig-saws,” where students from different groups but the same suits 

collaborate on part of an assignment and then report back to their groups with the collective 

knowledge needed to complete the activity. We change groups three or four times over the term, 

enabling each student to meet and work with most of the other students in the class. 

 

Although we provide fully loaded Windows PC’s with powerful IDE’s in our lab, we 

intentionally limit class activities to a command line driven, Linux environment.  Students learn 

(or are reacquainted with) text editors (emacs, vi, nano, etc.), bash scripts and source control - we 

require use of SVN for every artifact they create. For our C programming activities we use the 

GNU compiler (gcc) and debugger (gdb), with builds defined in make files. Our rationale was 

that small, precise “hand tools” are sometimes more appropriate than a large, multipurpose 

power tool such as Eclipse. In addition, students gain a better appreciation of what an IDE is 

doing under the hood, allowing them to adapt to situations where their favorite IDE is 

unavailable.  

 

Course Outline 

The course spans an eleven week term; Table 1 provides a week-by-week summary of topics 

covered. An important goal in designing the course was to devote the majority of each two hour 

session to an activity that encourages student collaboration while providing rapid response to 

problems by an instructor or student assistant.   

 

Week Topics 

1 

Linux Command Line 

Source Control (svn) 

C -  Introduction, I/O 

 

2 

Make files 

C – Arrays & Strings 

 

3 
C – Pointers & Memory Allocation 

 

4 

Debugging (gdb) 

C – Linked Data Structures 

 

5 

Unit Testing 

C++ (General Overview) 

 

6 

Introduction to Ruby 

General Ruby Concepts 

 

7 

Ruby as a Scripting Language 

Regular Expressions 

 

8 
Ruby as an Object Oriented Language 

Ruby Unit Testing 

P
age 25.33.4



 

9 

Relational Databases 

Web Application Frameworks 

Introduction to Ruby on Rails 

 

10 

Ruby on Rails 

Testing in Rails 

 

11 

Final Exam Week 

(Practicum in C or Ruby) 

 

Table 1. – SE350 Course Outline 

 

 

Class Activities 

Activities were developed for each class and are worked on by student pairs. Classes have s short 

up-front lecture on the topic of the day, and the activity is designed to reinforce the topic while 

being doable by the end of class. For programming activities, pairs are required to estimate the 

time expected to complete the activity, then track and report the actual time required and to 

reflect on the reasons for any difference (there are always differences). While the instructor and 

student course assistants were available for help, the “escalation ladder” for help is: your partner, 

other members of your group, and only then the instructor or course assistant.  Some students 

initially revert to immediately raising their hand for help, but they are gently nudged to try 

working through issues with their group first.   

 

Projects 

Projects and practica account for the majority of the student’s final grade; these are assessed on 

an individual basis, unlike the in-class activities and team- based projects in other courses.  Four 

projects of  2-3 weeks duration are  assigned during the term. Projects followed the topics being 

covered in class: a C project with no pointers, a C project with pointers and allocated memory, a 

Ruby project, and a Ruby on Rails project. 

 

In addition to their code submissions, students are also responsible for maintaining a “tracking” 

document (Figure 1) that captures their estimated and actual time spent on each phase of the 

project. (Appendix A has the complete description of the Sudoku project.) At the completion of 

each phase, they assess the reasons for differences between estimated and actual time and 

provide a brief narrative as to what worked well and what they would change in the next phase. 

This reflection document is submitted along with work products associated with the phase. 

 

At the conclusion of a project, groups meet in class to identify the top three process improvement 

items from their individual reflection documents. As a class we consolidate the group lists into a 

class-wide list, and target a subset of these for tracking during the next project. Many of the 

suggested improvements are what one might expect – start the project sooner, don’t 

procrastinate, read the project description, don’t be afraid to ask for help, and so on. The 

reflection session also provided the opportunity for students to share scripts they developed to 

automate some of their tasks, and to describe distinctive approaches to the assignment.   

P
age 25.33.5



 

4010-350 Tracking & Reflection Document 

SuDoKu 

Level 1 – Initialize & Print Empty Puzzle 

Estimation & Plan 
Estimated Time 02 Hrs 00 Mins 

Plan for this level: What do you have to do? What order will you complete the work? 

For this level, I have to complete the init_puzzle() and print_puzzle() functions. For init_puzzle(), I 
have to initialize the puzzle array to all zeros and initialize the fixed array to all FALSE values. For 
the print_puzzle() function, I have to write code that will print a Sudoku board in the correct format 
given by the project requirements. 

I will start by completing the print_puzzle() function, since I believe it will be easier to implement 
than the init_puzzle() function. Then I will complete the init_puzzle() function. 

 
Actual time and reflection. 

Actual Time 01 Hrs 15 Mins 

Actual / Estimate 0.63    

Ratio explanation (required if < 0.90 or > 1.10) 

I overestimated the amount of time it would take me to complete the print_puzzle() and 
init_puzzle() functions. I overestimated because I am only just starting the project and am not 
completely familiar with the entire project. 

Lessons learned, problems encountered, obstacles overcome, etc. 

I guessed that print_puzzle() would take less time to implement than init_puzzle(), but in reality it 
took much more time to implement than init_puzzle(). I confused the init_puzzle() function with 
the configure(pf) function, so the lesson to be learned is that I should fully understand what is to 
be implemented for each function before I make time estimates. 

 

Figure 1. Sample Project Tracking Document 

 

Practica 

Practica (or “lab practicals” as they are sometimes referred to in other disciplines) are designed 

to assess and motivate and assess student learning [1].  This mirrors a common practice in 

industry hiring, where companies often include a short logic or programming problem as part of 

the interview process. The goal in all cases to gage how the individual works through a problem 

and to provide an indicator of their technical ability. 

 

Practica are given in class at the conclusion of each major topic (C with no pointers, C with 

pointers, Ruby, etc.). Appendix B contains a sample practicum description. We focus on short 

programming problems that a competent engineer can complete within an hour. The problems 

reflect the in-class activities and project assignment, and are submitted in stages to reward 

incremental development and submission. Practica are open book, open notes, open internet – in 

essence, open everything except mouths. Practica turn out to be the most accurate individual 

assessment method we have, as students can’t hide in a group, so we better identify those in need 

P
age 25.33.6



of additional help. Students quickly realize that there is no real way to “study” for a practicum in 

the way one might study for an exam; instead, the most effective preparation for a practicum is 

the practice and experience obtained from the class activities and projects. This motivates 

students to attend class and seek out help for projects on more frequently. 

 

Good Software Engineering Habits 

 

“I’m not a great programmer, but I’m a good programmer with great habits” 

- Kent Beck 

 

This quote by Kent Beck is a mantra within our course. The goal of the programming activities 

and projects is not to reward students who can produce the cleverest solution, but to develop 

repeatable engineering habits that competent developers employ when building quality software 

products. These same habits are directly transferable to all activities in the software development 

life-cycle. [9] The following sections include a sampling of those habits we identified which 

contribute to success, and thus we want our students to acquire as they evolve into professional 

software engineers.   

 

“Spend more time reading your code than you do writing it.” 

Software developers write a lot of code, but unless they have reason to go back and modify it, 

they rarely spend an equivalent amount of time reading it. When developing C programs, 

students are encouraged to play “beat the compiler.” The goal was to complete a program with 

the minimal number of compiles that produce errors and warnings which careful inspection 

could have removed up front. This technique was advocated by Watts Humphrey in his Personal 

Software Process (PSP) methodology [4] and can be traced back to the days of submitting a deck 

of IBM punch cards to a central batch system to compile, link and execute your program. As the 

turnaround time for a single batch submission could be anywhere from minutes to hours based 

on the availability of the system, programmers were very careful to “desk check” their source 

code so as not waste their submission on a trivial compile error. A side benefit to this desk 

checking exercise is that in the process of scrutinizing their code in an attempt to identify 

compiler errors, programmers would also uncover logic and algorithmic errors as well.  

 

With turnaround times now in the range of milliseconds, modern day programmers, including 

our students, have developed the habit of rapid, sometimes random, edit-compile cycles until a 

clean compile occurs. This habit can be dangerous in a liberal language such as C that permits 

direct access and manipulation of memory while performing limited type checking. The focus on 

checking before compiling also introduces students to the concept of detecting and removing 

defects at the earliest point in the development cycle. Humphrey noted that in his classes students 

were surprised to see how much more effective manual code review was at identifying defects as 

compared to finding them later during testing. [5] 

 

“Do the simplest thing that could possibly work” 

We continually emphasize the value of incremental development and building in very small 

steps. Much like a large software project strives to continuously deliver business value to its 

customer in small increments that can be evaluated and used as feedback for subsequent product 

deliveries; we adopted the same though process for even small programming assignments. The 

P
age 25.33.7



first thought when starting on a new assignment should be, “what is the simplest thing I can do 

that will progress me to the next step”, at which point the thought process would repeat. Our 

students would experience the drawback of not taking this approach when they created even a 

modest amount of source code in the editor and then attempted their first compile. The 

incremental approach also holds true for testing, Test Driven Development (TDD) [7] has 

extolled the virtues of test a little, code a little, as any debugging process is usually restricted to 

new code that has just been added to a base of tested code. Every programmer is guilty of 

running to far ahead of uncompiled or untested code, and our students are no different.  

 

 

“Strive for Continuous Improvement” 

One of the key principles of Humphrey’s Personal Software Process is “to help software 

engineers to know their own performance: to measure their work, to recognize what works best, 

and to learn how to repeat it and improve upon it” [5].  We have embraced that philosophy in our 

course by emphasizing the need to collect quantitative data and qualitative observations during 

each activity undertaken in the course. Opportunities are offered to the students to reflect on an 

individual or group level in order to identify areas for improvements for future assignments. The 

mentality of continuously looking for process improvement opportunities is a common 

characteristic of successful professional software development teams. Engraining this habit early 

at the individual level contributes to making the student a more effective member on future team 

projects and ultimately in their career.  

 

“Care About Your Craft” 

This is the first of many valuable “tips” we used from The Pragmatic Programmer [6] which is 

required reading for our students. It states in simple terms, “Why spend your life developing 

software unless you care about doing it well?” One of the course goals is to instill a sense of 

professionalism and pride into our students. In addition to our programming activities, we 

included assigned readings from contemporary professional journals, magazines and blogs that 

students discussed in online forums. We also include material examining the state of software 

engineering practice. 

 

Student Feedback 

Students completed a course survey we have used as feedback to continually fine tune the 

course. Among some of the more interesting results from a survey of 121 students over four 

offerings of the course were: 

 

Attitude towards pair-programming 

71% - I enjoyed working in pairs most or all of the time 

29% - Usually not at all 

 

There is a stereotype with computing students that due to their introverted nature, they would 

prefer to work alone as opposed to working in pairs. We were pleasantly surprised to see that 

this was not the case and bolstered our enthusiasm for continuing the pair policy.   

 

Pace of in-class activities 

 15% - Too slow 

P
age 25.33.8



 64% - Just Right 

 21% - Too Fast 

 

Difficulty of projects 

  5% - Too Hard 

 75% - Just Right 

 20% - Too Hard 

 

One of the challenges of the course is that the students have a wide spectrum of programming 

experience. Students with substantial programming backgrounds can complete the activities 

and projects rather quickly, while less experienced students struggle to keep up. One 

experiment we have tried is that after the first project and practicum we create new groups 

that attempt to more evenly distribute students based on their performance and experience. 

The results in forming “novice-expert pairs” during class activities can be more or less 

successful depending on how willing the more “expert” student is to collaborate with his or 

her partner. [12] In any event, we feel comfortable that pace and difficulty of assignments is 

appropriate for the vast majority of the students. 

 

Student Comments (Favorite Parts of the Course) 

 

“I enjoyed being exposed to and learning new languages. I feel it will be very beneficial to 

me; not only the languages I learned, but the process I learned in learning new languages” 

 

“I really like that we got to learn C. Having an understanding of linked lists helped me a ton 

on a Microsoft interview, and I think C is a very useful language after this course.” 

 

“I actually liked the practicums. I felt that they were a good way of assessing knowledge in 

the curriculum.” 

 

“Learning something besides Java!” 

 

 

Student Comments (Least Favorite Parts of the Course) 

 

“It just seems like too much is jammed into the course. I learned everything, but I would have 

liked more time to explore things.” 

 

“Having to teach myself different languages in a limited amount of time” 

 

“Segmentation faults in C!” 

 

We selected these specific comments since they reflect the views of two contrasting sets of 

students in terms of their classroom expectations. One of the characteristics of the course that we 

are continually evaluating is the idea of having students be more responsible for their own 

learning versus a more heavily teaching centric approach. We feel strongly that the learning 

centric approach will be more beneficial to students in the long term and will instill more 

P
age 25.33.9



confidence in their own ability to address new programming languages and development 

environments. 

 

 

Conclusions 

We have developed a personal software engineering course that embraces active and cooperative 

learning in achieving the overarching goals of having students: 

 Construct and test a software component in accordance with contemporary practice.  

 Plan, estimate, track and analyze the effort required to construct and test a software 

component. 

 Apply fundamental software construction techniques in using new languages and tools. 

 Achieve growth in professional software development including technical writing / 

documentation and review of contemporary literature. 

 

The course has been positioned early in the curriculum of our undergraduate software 

engineering program to encourage early adoption of programming habits that contribute to the 

development of quality software products The acquisition and practice of these individual skills 

will translate into more effective team performance when they move on to larger, team-based  

projects. 

 

References 
 

[1]    Bennedsen, J. & Caspersen, M., “Assessing process and product-a practical lab exam for an introductory 

programming course”, Frontiers in Education 2006  

[2] Cockburn, A., “Designing an incremental-iterative one-semester, undergraduate course in software 

engineering”, Humans and Technology Technical Report HaT TR 2006.03, Sept 6, 2006 

[3]    Hou, L. and Tomayko, J., "Applying the Personal Software Process in CS1: an Experiment", in Proceedings of 

29th SIGCSE Technical Symposium on Computer Science Education, Atlanta, Feb 26-Mar 1 1998, pp. 322-

325  

 

[4]     Humphrey, W.S., “The Personal Process in Software Engineering”, Third International Conference on the    

Software Process, Reston, Virginia, October 10-11, 1994, pp 69-77. 

 

[5]     Humphrey, W. S., PSP: A Self-Improvement Process for Software Engineers, Addison Wesley, 1997. 

 

[6] Hunt, A. & Thomas, D., The Pragmatic Programmer, Addison-Wesley, 2000 

 

[7] Hunt, A. & Thomas, D., “Learning to Love Unit Testing”, Software Testing and Quality Engineering (STQE), 

Jan/Feb 2002 

 

[8] Maletic, J.I.,  Howald, A,  Marcus, A., “Incorporating PSP into a Traditional Software Engineering Class: An 

Experience Report”, 14
th

 Conference on Software Engineering and Training, Charlotte, NC,  2001. 

 

[9]  McConnell, S., Code Complete 2, Microsoft Press, 2004 

 

[10] Millis, B. & Cotteel Jr, P., Cooperative Learning for Higher Education, American Council on Education Oryx 

Press, 1998 

 

P
age 25.33.10



[11] Williams, L. & Kessler, R., Pair Programming Illuminated, Addison-Wesley, 2003 

 

[12] Williams, L. & Kesler, R., “The Effects of Pair-Pressure and Pair-Learning on Software Engineering 

Education”, Conference of Software Engineering Education and Training, 2000 

 

 

Appendix A – Sample Student Project  

Sudoku Project Description 

For this project you will complete a skeleton C program that presents a sudoku puzzle to a player 

and provides commands for the player to incrementally solve the puzzle. Here is a tutorial on the 

rules of sudoku for those who are unfamiliar with the game. 

Setup (Provided Skeleton Code) 

Download the file sudoku.zip from the software engineering website to a clean working directory 

for this project. At this point you should see the following files & directories: 

bool.h 
A header file declaring a pseudo-type for bool along with constants FALSE and TRUE. 

main.c 
The main driver function: It parses the command line arguments, initializes the puzzle, 

loads the puzzle configuration from a file provided as an argument, and, if the load 

succeeds, reads user commands (one command per input line) and calls the appropriate 

processing function in the puzzle module.  

arguments.h & arguments.c 
Interface to and implementation of a module processing the command line arguments to 

(a) determine whether or not the input commands should be echoed (optional -e flag), and 

(b) open the puzzle configuration file, which defines the initial state of the puzzle. Exits 

with appropriate messages if there are problems with the arguments provided. 

Note: You need not concern yourself with this module, as it is only used by the main 

function. On the other hand, perusing it would give you examples of using some standard 

C functions and idioms. 

puzzle.h & puzzle.c 
The puzzle module you will complete. The header, puzzle.h, defines the interface you 

must adhere to, as the only source file you will submit is the corresponding 

implementation, puzzle.c. In particular, puzzle.c is the one file you must edit and the only 

file you may edit. 

solve_sudoku & skeleton_sudoku 
Two executable files, compiled and linked for Linux. solve_sudoku represents a full, 

complete implementation of the requirements, including error handling; use it as a 

reference against which to compare your program as you go along. skeleton_sudoku was 

compiled directly from the files we provide; all the functions in the puzzle.c file have 

been stubbed out, and those functions with return values return whatever is required to P
age 25.33.11



make it appear that everything proceeds normally. This can be used as a baseline for 

comparison with your version. 

Makefile 
A file making it easy to compile the source code and link the object files. To create an 

executable file named sudoku use the command: 

 
    make sudoku 
 

As you add functionality to the puzzle.c implementation, this executable will be used to 

test your changes. Makefile also has a series of targets to run your program using 

different valid and erroneous puzzle configurations, as well as command scripts that are 

error free or seeded with specific types of errors. More on these tests below. 

p+s 
A directory with (p)uzzle configurations and command (s)cripts for use in testing. 

Description.html 
This file (in case you are working remotely and can't access the SE web servers). 

Track+Reflect.doc 
An M/S Word file in which you record your estimate and actual time it took to do each 

level, along with reflections on why they diverge (if they do) and your perception of the 

project as a whole. 

Note: If you have problems running either solve_sudoku or skeleton_sudoku, this is probably 

because the files are exectuable. To fix this, run the following command on Linus: 

chmod +x solve_sudoku skeleton_sudoku 

This will set the e(x)ecute permission on these files, at which point you should be able to run 

them. 

Using the Example Programs 

All the examples will be given using solve_sudoku. You can substitute skeleton_sudoku, but 

the program will look like it did nothing (which, in fact, is what happens in the skeleton). And, of 

course, as you implement the required functionality, you can use your compiled version, sudoku. 

The program is invoked in one of two ways: 

./solve_sudoku configfile 

./solve_sudoku -e configfile 

In both cases, configfile is a text file giving the initial placement of digits in the puzzle. The 

optional -e flag determines whether or not the user commands are echoed to standard output. If 

you're running on the console and typing in commands, you should probably not use the flag. On 

the other hand, if you are running commands from a script (a text file), then -e lets you see what 

commands are executed in sequence. 

Example 

P
age 25.33.12



./solve_sudoku -e p+s/good_puzzle.txt < 
p+s/script_good_solve_puzzle.txt 

runs the program using a legitimate puzzle configuration in p+s/good_puzzle.txt with echoing 

turned on and the commands coming from the script file p+s/script_good_solve_puzzle.txt - 

this script has commands that add digits to the puzzle to solve it. Along the way, the partial 

puzzle solution is printed at several points.  

You could run the puzzle interactively as follows: 

./solve_sudoku p+s/good_puzzle.txt 

In this case, the main program directs the initialization and loading of the puzzle configuration, 

prints the initial board, and enters the command loop. Each time through the loop the program 

prompts command: to which you respond with a single lower-case letter command and possibly 

digits used by the command. Spacing is important: the command letter must be the first character 

on the line, and the command and arguments are separated from each other by a single digit; 

each command is terminated by a newline. The commands are: 

p Print the puzzle 

q Quit (also on end-of-file) 

a r c d Add digit d to the puzzle at row r column c 

e r c  Erase the digit at row r column c 

Rows, columns, and digits are all in the range 1..9. 

Design Notes 

Puzzle Configuration File Format 

The configuration file comprises a series of 0 or more rows, each row beginning with three digit 

characters giving the row, column, and value for one of the initial placements in the puzzle. All 

three digits must be in the range 1..9. For example, the line 135 means 5 is to be placed at 

row 1, column 3 in the initial configuration. 

Puzzle Data Structures 

The puzzle implementation is built on two 10x10 matrices: puzzle and fixed. The matrices are 

10x10 to permit 1-based indexing into the 9x9 array defining the puzzle proper; the 0th row and 

column are unused. 

The puzzle matrix holds the values placed so far, with 0 representing a blank (available) location 

or cell. After initialization to all zeros, this matrix is filled in first from the configuration file and 

then via commands read from standing input. In later stages of the implementation, the program 

P
age 25.33.13



will enforce the Sudoku consistency constraints - a row, column, or 3x3 region may not contain 

the same value in two cells. 

The fixed matrix is a boolean matrix initialized to all FALSE values. When a puzzle is 

configured (via data in a configuration file), the row and column for each value so placed is set 

to TRUE in fixed. In later stages of the implementation, attempting to erase a fixed value is an 

error and the cell is not changed. 

Puzzle Module Interface 

The public interface has of an enumeration, op_result, which is used to report back the status of 

each add or erase command. OP_OK signals success; the other values in the enumeration reflect 

the different errors that may be detected. OP_BADARGS means the command gave a row, 

column, or digit that was not in the range 1..9, OP_OCCUPIED is for attempts to place 

something at a location with an existing value, OP_ILLEGAL is for placements that would 

violate the Sudoku rules (a duplicate value in a row, column, or region), OP_EMPTY is for 

attempts to erase an empty cell, and OP_FIXED is for attempts to erase a fixed cell (one set by 

the puzzle configuration). Only OP_OK results in a change to the puzzle layout; all erroneous 

commands have no effect. 

The interface proper is defined by five visible functions: 

init_puzzle( ) Initialize the puzzle and fixed matrices. 

configure( pf ) Read configuration lines from the file whose handle 

is pf and use this to fill out the puzzle and fixed 

matrices. If any configuration errors are encountered, 

this function prints a message and exits - thus a return 

from this function represents successful configuration. 

print_puzzle( ) Print the puzzle 

- The first line is 25 dashes (-). 

- A line of 25 dashes is also printed after the 3rd, 6th, 

and 9th row of the puzzle. 

- Each puzzle row begins with a vertical bar (|) 

- Each cell in the row is printed as a space and the cell's 

value (space for a 0 value). 

- After the 3rd, 6th, and 9th colum, a space and a vertical 

bar are printed. 

add_digit( r, c, d ) Add digit d to the puzzle cell at row r, column c, 

returning success or error status. 

erase_digit( r, c ) Erase the puzzle cell at row r, column c, returning 

success or error status. 

 

P
age 25.33.14



Tasks & Deliverables 

The project is organized as a sequence of six functionality levels. Each level requires you to 

extend the work done at the previous level. For each level 1 through 6 you will fill out the 

associated estimating, tracking, and reflection activity outlined in the file Track+Reflect.doc. 

15% of your project grade rides on your attention to the details of estimating the time it will take 

you to complete the activity, track that time and accurately record it when the level is done, and 

provide thoughtful reflection on the work you did. Some levels are relatively straightforward and 

require less in the way of reflection, however they should not be ignored completely. 

Similarly, 15% of your grade is based on the quality of your implementation. Aspects considered 

include: 

 Naming: Are variable, function and other names meaningful? Do they have a clear 

relation to their role in the computation? Would a competent developer be able to pick up 

this code and understand why you chose the names you did? 

 Documentation: Do you use comments to simply repeat the code or to provide insight 

into its context and intention? Are comments, clear, concise, and correct? Are comments 

readable - do they avoid distracting grammatical and spelling errors? Are the aligned with 

the code to make it obvious which comments refer to which sections of code? 

 Structure: Are the bodies of functions organized into clear, coherent sets of statements 

that clearly contribute to the function's goals? As appropriate, are sections of code 

factored out into local functions of their own, either to simplify the original function, to 

enhance readability, or to adhere to DRY (Don't Repeat Yourself)? 

 Style: Does the layout of the code enhance its readability? Do you use consistent 

indentation in line with examples done in class? Do you use blank lines to separate 

distinct blocks of code? Do you use spaces to enhance readability (or are expressions 

scrunched together, making it difficult to distinguish variables from operators from 

constants)? 

 Source Code Control: Did you demonstrate appropriate us of source code management 

during the development of the project? Did you provide svn comments for each commit 

of an update file? Is your test code under source control? 

Level 0 (Compiles & Links) 

This is a pseudo level, in that all your puzzle.c must do is compile and link against the rest of the 

program, and your Track+Reflect.doc must contain a reflection on whatever you did. As these 

conditions can be met by simply submitting the puzzle.c skeleton in the zip file and almost 

anything for thetracking and reflection, this is really a test of whether you can submit to 

myCourses.  

Level 1 (Puzzle Module Initialization and Printing of an Empty Puzzle) 

Fill in the body of the init_puzzle() function and write the print_puzzle() function. Skeletons 

for two static methods related to printing are there for your completion and use: print_dashes() 

and print_row(row). When your modifications compile and link, test them using make: 

P
age 25.33.15



make test_l1 

Level 2 (Initialization, Configuration and Printing of a Real Puzzle) 

Fill in the body of the configure(puzzle_file) function, ignoring any error conditions for now. 

This requires you to 

 Read three digit characters and a newline from the file whose handle is the argument (see 

the Puzzle Configuration File Format section). 

 Convert each digit character to the number it represents, 

 Place the value in the puzzle cell designated by the row and column, and finally, 

 Mark the selected cell as fixed. 

When your modifications compile and link, test them using make: 

make test_l2 

Level 3 (Add and Erase Commands) 

Fill in the bodies of add_digit(row, col, digit) and erase_digit(row, col), ignoring any error 

conditions for now. 

When your modifications compile and link, test them using make: 

make test_l3 

This runs three tests: one a simple test of adding, one a simple test of erasing, and one 

which solves a real puzzle - the last printout shows a completed puzzle. 

Level 4 (Syntax and Simple Add/Erase Errors) 

Change the configure function: 

1. Discard everything after the three digit characters up to and including the next newline or 

EOF. 

2. Check to ensure they are all digit characters in the range '1' through '9'; if any are not in 

range, print the message: 

    Illegal format in configuration file at line N, where N is the line number, and call 

exit(1). 

You may find it useful to complete the skeleton helper function in_range(value). 

3. Ensure that the cell at the selected row and column is not already filled with a value; if it 

is, print the message: 

    Illegal placement in configuration file at line N, where, once again, N is the line 

number, and call exit(1). 

Change the add_digit function: 

P
age 25.33.16



1. If any of the three arguments is not in the range 1 .. 9, return OP_BADARGS without 

changing the puzzle. You may find the helper function in_range(value) useful. 

2. If the selected cell already has a value in it (i.e., it is non-zero), return OP_OCCUPIED 

without changing the puzzle. 

Change the erase_digit function: 

1. If either of the two arguments is not in the range 1 .. 9, return OP_BADARGS without 

changing the puzzle.You may find the helper function in_range(value) useful. 

2. If the selected cell is already empty (i.e., its value is 0), return OP_EMPTY without 

changing the puzzle. 

3. If the selected cell is fixed (non-eraseable), return OP_FIXED without changing the 

puzzle. 

When your modifications compile and link, test them using make: 

make test_l4 

This runs a series of tests, the first few with different combinations of bad configuration files, 

and a last one with a valid puzzle but bad (a)dd and (e)rase commands. 

Level 5 (Row and Column Rule Violations) 

Change the configure function: 

1. Check to ensure that the value being placed in the puzzle is not already in the row or 

column specified. If it would be a duplicate, print the message: 

    Illegal placement in configuration file at line N, where N is the line number, and call 

exit(1) - you may want to add this check onto the previous one that produces this 

message. You may find it useful to complete the skeleton helper functions 

row_contains(row, digit) and col_contains(col, digit). 

Change the add_digit function: 

1. Check to ensure that the value being added in the puzzle is not already in the row or 

column specified. If it would be a duplicate, return OP_ILLEGAL without changing the 

puzzle. 

You may find the helper functions row_contains(row, digit) and col_contains(col, 

digit) useful. 

When your modifications compile and link, test them using make: 

make test_l5 

This runs a series of tests, the first few with different combinations of bad configuration files, 

and a last one with a valid puzzle but bad (a)dd commands. 

P
age 25.33.17



Level 6 (Region Rule Violations) 

Change the configure function: 

1. Check to ensure that the value being placed in the puzzle is not already in the region 

specified. If it would be a duplicate, print the message: 

    Illegal placement in configuration file at line N, where N is the line number, and call 

exit(1) - you may want to add this check onto the previous one that produces this 

message. You may find it useful to complete the skeleton helper function 

region_contains(row, col, digit). 

Change the add_digit function: 

1. Check to ensure that the value being added in the puzzle is not already in the region 

specified. If it would be a duplicate, return OP_ILLEGAL without changing the puzzle. 

You may find the helper function region_contains(row, col, digit) useful. 

When your modifications compile and link, test them using make: 

make test_l6 

This runs a series of tests, the first few with different combinations of bad configuration files, 

and a last one with a valid puzzle but bad add commands. 

Assessment (100 pts total) 

Level 0 (puzzle.c compiles and links) 10 

Level 1 (initialize and print empty puzzle) 10 

Level 2 (initialize, configure and print a real puzzle) 15 

Level 3 (add, erase and solve a real puzzle) 15 

Level 4 (detect bad syntax and simple add / erase errors) 5 

Level 5 (detect adding duplicate values in row or column) 5 

Level 6 (detect adding duplicate values in a region) 10 

Estimation, tracking, analysis and reflection 15 

Implementation quality, source control 15 

 

 

Appendix B – Sample Practicum 

(Also representative of a typical class activity performed in pairs) 

  

Instructions 
  

P
age 25.33.18



This practicum has a firm 50 minute time limit and will be taken in lab during class time 

only. The practicum is open book, open notes, open Internet, open everything – except help from 

your neighbors or instructor. 

  

Problem 
  

This exercise requires you to write a C function that deletes a symbol / value pair from a hash 

map. The prototype (signature) of the function is 

  
void drop( char *symbol ) 

  

The given code hashmap.c includes the following functions: 

  

insert( )  - inserts a symbol / value pair into the hash map using symbol as the key 

hash( ) –  uses the given symbol to perform a hash function which computes the index (bin) into 

the hash table 

lookup( ) – returns the hash table bin entry (symbol / value) for a given symbol 

dump( )  - print all the symbol / value pairs for the hash table 

main( ) – edit this function to include any tests you created to verify your solution. 

 

The following standard string functions are also used: 

int strcmp( char *s1, char *s2 ) – compares two strings, returns zero if  strings are equal 

char *strdup ( char *s1 ) – returns an allocated block of memory containing a duplicate of  string 

s1 

 

1. Download the starter code and makefile: 

o hashmap.c 

o Makefile 

2. READ the existing code before you begin writing the drop() function. Draw diagrams as 

needed to (re)familiarize yourself with the hash map data structure. 

3. Run the sample program which inserts symbol/value pairs and prints the contents of the 

hash map.  

4. Write the drop() function and modify the main() function as needed to test your solution. 

A sample test case is included in main() to get you started.  

5. Enter your name in the header block of the program.  

6. You do not need to modify any existing functions other than main(). 

7. When you are ready to submit your solution, drop your file into the Practicum One drop 

box in myCourses. You may make multiple submissions; I will only look at the last one 

submitted. 

 
NOTE: In writing drop(), it is your responsibility to ensure that all the allocated memory 

resources/areas are no longer needed in the hash map are properly released in the proper 

order.  P
age 25.33.19


