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Abstract—Decision making, particularly in Machine Learning 
and Data Sciences, faces a major challenge of skewing to the 
majority dataset. The disproportion creates difficulties for 
traditional machine learning models, which most times gives false 
predictions and inaccurate results. We propose in this paper a 
decision-making framework for addressing imbalanced learning 
problems in standoff detection of threat chemicals. Our goal is to 
formulate a decision-making framework where detection 
thresholds and confidence scores are optimized to minimize false 
negatives, using Synthetic Minority Oversampling Technique 
(SMOTE) and Random Forest training classifier. 
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1. INTRODUCTION  

    In recent years, machine learning and data science have 
become indispensable tools in a wide range of applications, from 
healthcare to national security. However, one persistent 
challenge is the issue of imbalanced data—where the minority 
class is significantly underrepresented compared to the majority. 
This imbalance often skews decision-making processes, leading 
traditional algorithms to favor the majority class, which in turn 
results in false predictions and reduced overall accuracy. In 
critical applications, such as standoff detection of threat 
chemicals, even a small number of false negatives can have 
severe consequences for safety and security. 

The complexity of accurately detecting threat chemicals is 
compounded by the inherent rarity of these events relative to 
normal background signals, making standard machine learning 
models ill-suited for such tasks. To overcome these challenges, 
advanced data augmentation techniques and robust classifiers 
are necessary. In this paper, we propose a novel decision-making 
framework that optimizes detection thresholds and confidence 
scores to minimize false negatives. By integrating the Synthetic 
Minority Oversampling Technique (SMOTE) with a Random 
Forest training classifier, our approach aims to provide a more 
reliable and accurate solution for imbalanced learning problems 
in the context of standoff chemical detection. 

The detection of threat chemicals is crucial in ensuring 
security across various sectors, including national defense, 
environmental monitoring, and industrial safety. Standoff 
detection methods allow for the identification of hazardous 
substance from a distance, thus minimizing the risk of exposure 
to the personnel and enabling timely intervention. Standoff 

detection also plays a vital role in various applications including 
screening at airports, border crossing and critical infrastructure 
site. The ability to remotely detect explosives, toxic chemicals 
and narcotics helps mitigate risks associated with these threats 
and contributes to overall public safety. 

The method used in [1] to conduct experiments is safe, both 
to humans and the environment, and it will be able to 
differentiate between the explosive and harmless background 
chemicals. To achieve this purpose, Eye-safe infrared laser 
interrogation was used coupled with infrared sensors or imaging 
arrays.  

Standoff detection technologies, such as infrared backscatter 
hyperspectral imaging, have been increasingly adopted for their 
ability to detect and identify chemical threats without direct 
contact.  

In this paper we proposed an approach that balances 
detection accuracy and false alarm rate, while improving the 
decision making process where detection threshold and 
confidence scores are optimized to minimize false negatives. 
The key contributions to achieving this task are listed as follows: 

 SMOTE technique was applied to generate synthetic 
samples for the minority class using random numbers. 
This is done to balance the dataset, using the in-built 
resampling method.  The dataset consists of background 
samples (majority class) and Threat chemical samples 
(minority class).   

 The balanced dataset was trained using a Classifier 
(Random Forest) to ensure that the model can 
effectively learn from a data and generalizes well to new 
samples. 

 The effectiveness, accuracy and precision of this model 
were evaluated  by using a confusion matrix, precision 
recall F1 score and ROC curve to assess how well the 
model handles the imbalanced data. 

The primary objective of this paper is to develop a robust 
decision-making framework to address the imbalanced learning 
problem in the standoff detection of threat chemicals context. 

The sections of this paper are organized as follows. Section 
II presents a review of existing works within the field. In Section 
III the formulation of the problem is stated. Section IV deals 



with data preparation and the Methodology used for the 
experiment. The results of the algorithm implemented in Matlab 
are found in Section V. Section VI serves as the conclusion 
while in Section VII the future work is presented. 

 II.  LITERATURE REVIEW 

Imbalanced datasets are a pervasive challenge in 
hyperspectral imaging, largely due to the inherent rarity of 
certain chemicals of interest. This imbalance skews the data 
distribution, complicating the accurate detection of minority 
class instances and leading to suboptimal performance of 
conventional machine learning models. To mitigate these issues, 
a variety of methodologies have been proposed. 

 
One widely adopted approach is oversampling, which seeks 

to balance class distribution by increasing the number of 
minority class samples. A popular oversampling technique is the 
Synthetic Minority Over-sampling Technique (SMOTE), 
which generates synthetic samples by interpolating between 
existing minority class instances [2–4]. An alternative variant, 
Adaptive Synthetic (ADASYN), focuses on generating 
additional synthetic data in regions where the minority class is 
particularly underrepresented and harder to classify [5]. 

 
Conversely, undersampling techniques aim to balance the 

dataset by reducing the number of majority class samples. 
Methods such as Random Undersampling randomly remove 
instances from the majority class [6], while Tomek Links 
identify and eliminate borderline majority class samples that are 
nearest neighbors to the minority class, thereby reducing class 
overlap and bias [9–11]. 

 
Another effective strategy is the cost-sensitive learning 

approach, which modifies the learning algorithm to assign 
higher misclassification costs to minority class instances. By 
penalizing errors more heavily for the minority class, the model 
is encouraged to focus on accurately classifying these critical 
cases — a particularly important adjustment in domains where 
misclassification of the minority class can have severe 
consequences, such as in medical diagnosis and fraud detection 
[7]. 

 
Additionally, hyperspectral image analysis itself offers 

powerful tools for chemical detection. By capturing detailed 
spectral information across numerous narrow bands, 
hyperspectral imaging facilitates the identification of materials 
and detection of chemical components. Techniques such as 
spectral unmixing, classification, and anomaly detection 
leverage these detailed signatures, especially in the infrared 
range—to accurately quantify chemical substances. These 
methods have been successfully applied in remote sensing, 
agriculture, and environmental monitoring, with recent 
advancements significantly enhancing sensitivity and accuracy 
[7, 8]. 

 
Complementing these data preprocessing strategies, robust 

decision-making frameworks are essential for addressing 
imbalanced learning challenges in threat detection. Bayesian 
Decision Theory, for instance, employs Bayes’ theorem to 
incorporate prior knowledge and adjust for the minority class by 

modifying prior probabilities, thereby reducing bias and 
enhancing detection of rare events [12, 13]. Similarly, Decision 
Tree models, which partition data based on spectral features, 
can be augmented with methods such as Convolutional Neural 
Networks (CNNs) to improve classification accuracy in 
imbalanced datasets [14].  

   III. PROBLEM FORMULATION 

     Detecting harmful chemicals from a standoff perspective 
poses significant challenges for sensor and detection systems. 
In these scenarios, the inherent data imbalance—where the 
minority class (threat chemicals) is vastly underrepresented 
compared to the majority (background signals)—often skews 
the outcomes. Traditional machine learning models struggle 
with this imbalance, exhibiting issues such as bias toward the 
majority class, insufficient representation of the minority class, 
overfitting, and sensitivity to noise and outliers. These 
limitations lead to a lack of trust in model predictions, 
ultimately resulting in poor performance and inaccurate 
decision making [2]. 
     
     The objective of this work is to develop a robust decision-
making framework that effectively addresses the challenges of 
imbalanced learning in standoff chemical detection. This 
framework will optimize detection thresholds and confidence 
scores to enhance the accuracy of identifying the minority 
class—specifically, threat chemicals—without compromising 
the overall performance of the detection system. Ultimately, our 
approach aims to provide a more reliable and trustworthy 
solution for critical applications where even a small number of 
false negatives can have severe consequences.   

IV.  METHODOLOGY 

      We employed a combination of the Synthetic Minority 
Over-sampling Technique (SMOTE) and a Random Forest 
Classifier to address the imbalance. Again, synthetic data is 
used, as actual real hyperspectral data is not available. The 
methodology and Hyperspectral data are preprocessed in six 
stages as stated below. For our simulation results we used 
MATLAB software. 
          

       A. STEP 1: Generate Synthesis Hyperspectral Data 

      Since actual hyperspectral data is not available, synthetic 
Hyperspectral Data is generated using random numbers. The 
dataset consists of background samples (majority class) and 
threat chemical samples (minority class). The threat sample is 
set to 50, indicating that there are 50 samples of the threat 
chemicals, while background sample is set at 950, thus bringing 
the total number of the samples to 1000.  Each pixel or 
observations (Rows) in the image data consists of multiple 
wavelengths bands (spectral bands) of 100 wavelengths. 
Furthermore, the labels array is initialized with zero 
(background) and the first 50 elements of entries are updated to 
1 (Threat chemical).  Y is also initialized as a column vector of 
zero, with 1000 elements. From the synthetic hyperspectral data 
generated, the number of threat chemical samples is much 



smaller than background samples. This results in an imbalanced 
dataset.  
      

 B.  STEP 2: Visualize the Class Distribution (imbalance in 
the Dataset) 

      This stage visualizes the imbalanced data class distribution 
by plotting the histogram as in Fig. 1. 

 
Fig. 1. Histogram representing Class Distribution 

 
    The histogram shows frequency of threat classes and 
background classes by creating bars representing each class 
label. Y represents the frequency, while X represents each class 
label. 
 

 C.  STEP 3: Use SMOTE To Address the Imbalance 

      We applied SMOTE algorithm to generate synthetic 
samples for the minority class to balance the dataset, using the 
in-built resampling method. The threat sample, represented by 
X, is added to resample the set. Then we initiated a loop (j) in 
Matlab, that will run 10 times iteration. The variable j will take 
on value from 1-10 in each iteration. This ensures that each 
threat sample is oversampled 10 times. Then, noise of about 
0.05 scale value is added for synthetic generation. The noise 
introduces small random variation to the minority threat class, 
which makes the threat class more realistic and diverse. Finally, 
most of the class (background samples) are added to the 
resampled dataset before the two datasets are trained. 
 

D.  STEP 4: Train a Classifier (Random Forest) 

      Leveraging on the balanced dataset created in Step 3, the 
training on a Random Forest classifier ensures that the model 
can effectively learn from the data and generalize well to new 
samples. In training the classifier, we first split the dataset into 
training sets and testing sets. Splitting the data is a fundamental 
step in machine learning, crucial for building robust and 
generalized models. This splitting ensures unbiased evaluation 
and prevents the overfitting of data. In this experiment, 20% of 
the data is held out for testing. After splitting the 20%, the test 
sets are assigned, for example: X_Train and Y_Train are the 
Training data features and Labels respectively, while X_Test 
and Y_Test are the Testing data features and Labels 

respectively. Then, the Fitensemble script implemented in 
Matlab  trains the ensemble, which is built using 100 iterations 
for classification task purposes. We used Random Forest 
Matlab Classifier as illustrated in Fig.2. 

 

 
 

Fig. 2. Random Forest Algorithm 
 

E. STEP 5: Test the Model 

     After the model has been trained in Step 4 using the training 
dataset, their performance is evaluated to ensure that the model 
generalizes well with the new data. Then, the predict function 
takes the dataset X_ and uses the trained model to generate 
predictions. These predictions (y_pred) represent the  model’s 
best guess for the output based on the test data’s features. Then, 
the model accuracy is calculated by comparing the predictions 
(y_pred) with the true test labels (y_test). This step test provides 
an insight into the effectiveness of using Random Forest 
Classification model. It helps with evaluation and 
generalization. The Fitcensemble routine is used to train the 
ensemble.  
 

F.  STEP 6: Evaluate Performance 

     After testing the model, its performance was evaluated using 
several metrics—namely, a confusion matrix, precision, recall, 
F1 score, and ROC curve—to assess its ability to handle 
imbalanced data. The confusion matrix, which details true 
positives, true negatives, false positives, and false negatives, 
provides a clear comparison between actual labels and 
predicted outcomes. Precision is reported with two decimal 
places to quantify the accuracy of the model's positive 
predictions, while recall measures the proportion of actual 
positive cases correctly identified. The F1 score, representing 
the harmonic mean of precision and recall, offers a balanced 
overall assessment. Notably, the experiment achieved an F1 
score of 1, indicating optimal performance in identifying the 
minority class.  

 
V. EXPERIMENTAL RESULTS 

      
     The results obtained are visualized in the Receiver 
Operating Characteristics Curve (ROC). The ROC curve plots 
the True Positive Rate (sensitivity) against the False Positive 



Rate (FPR) (1-sensitivity) at various threshold settings. ROC 
assesses how well the model handled the imbalanced data.  
 
AUC (Area Under Curve) measures the entire two-dimensional 
area underneath the entire ROC curve from (0 0) to (0 1). It is a 
single metric summarizing the overall performance of the 
classification across all thresholds. From the experiment, the 
AUC=1. This means the model has high accuracy and excellent 
performance.   

 
Fig. 3. ROC Curve 

 

Confusion Matrix: ቂ190 0
0 110

ቃ 

 

TABLE 1: INTERPRETATION OF THE CONFUSION MATRIX 

 Predicted 
Negative 

Predicted 
Positive 

Actual Negative 190 0 
Actual Positive 0 110 

 
True Negative (TN) = 190. The model correctly predicted 190 
instances as negative (class 0) which are negative. 
False Positive (FP)  = 0; The model did not incorrectly predict 
any negative instances as positive. There are no false positives. 
False Negative (FN) = 0; There are no false negatives. 
True Positive (TP) = 110; The model correctly predicted 110 
instances as positives (class 1) which are positive. 
Then, the performance matrix is calculated thus: 
Precision:  TP                     110 
                  TP + FB      =     110 + 0   = 1.00    
 
Recall:       TP    110 
     TP + FN     =      110 + 0   = 1.00  
 
F1 Score:   2* [(Precision * Recall) 
                        (Precision + Recall)] =   1.00 
 

Trade Off in Decision Making: 

      In the context of chemical threat detection, both False 
Positive Rate (FPR) and False Negative Rate (FNR) are critical 

metrics that impact the effectiveness and reliability of detection 
systems. High FPR leads to alert fatigue, where operators 
become desensitized to alarms, due to frequent false alarms 
(missing real threats), while High FNR poses a significant 
safety risk, as undetected threat can lead to exposure to harmful 
chemicals, resulting in health hazards or environmental 
damage. 

Real-world Applications: 

      In terms of response times, Standoff detection systems, such 
as laser-based spectroscopy and radar imagination used for 
security and surveillance can detect threats from a distance, 
allowing for a rapid response. Again, the accuracy of standoff 
detection system used in medical diagnosis for diagnosing 
either benign or malignant cancerous disease and disease 
screening are crucial to minimizing false positives and false 
results. Other real-world applications are in autonomous 
systems which include self-driving cars (for object detection) 
and Drones, which use the model for surveillance and threat 
detection. Banks and Insurance companies also used the model 
for fraud detection and insurance claims. All these are deployed 
with ease considering cost, size, and operational environment.  

 
VI. CONCLUSIONS 
 

      From the experiment performed, the proposed methodology 
of using SMOTE and Random Forest classifier has effectively 
mitigated the challenges posed by class imbalance in the 
dataset. The result demonstrates outstanding performance, with 
a Precision of 1.00, Recall of 1.00, and F1 Score of 1.00. These 
metrics indicate that the framework achieves a perfect 
identification of threat instances while maintaining no false 
positive or false negatives. Such exemplary performance 
underscores the robustness and efficacy of the combined 
approach in enhancing the detection capabilities of standoff 
detection systems. 
 
      In conclusion, the proposed decision-making framework for 
addressing the imbalanced learning problem in standoff 
detection has proven to be a robust and efficient solution, 
capable of significantly improving the accuracy and reliability 
of threat detection system.  
 

VII. FUTURE WORK 

       As the standoff detection challenges keep evolving, which 
include different types of standoff detection scenarios, various 
threat types and environment, it is expected that this model be 
developed further and tested for different data sets. This paper 
open up to new avenues for research in Advanced Deep 
learning models and effective imbalanced leaning system for 
highly overlapped imbalanced classeses involving rare 
diseases, abnormal behaviour  or trace explosive, which can 
save billions of dollars and human life.  
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