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Abstract 
We have developed a laboratory activity to demonstrate the basic central processing unit (CPU), 
input, output, and memory of a computer. The activity is intended to help beginning engineering 
students or non-engineering students to understand basic computer architecture. The activity is 
based on sixteen individuals who are assigned to conduct specific tasks in a manner analogous to 
specific computer hardware elements. Tasks assigned to humans include: I/O, memory, control 
unit, ALU, and registers. The central processing unit consists of five internal registers, an arith-
metic/logic unit, and a control unit. These components are interconnected via an internal bus. 
Bus arbitration is implemented using tri-state buffers. The CPU communicates with memory and 
the I/O devices through an 8-bit data bus, a 4-bit address bus, and a control bus. The instruction 
set includes a total of 9 instructions designed to perform arithmetic/logic operations, control 
flow, and I/O operations involving memory and external devices. Prior to simulation, computer 
programs are converted to binary code and loaded into memory. Program code comprises a data 
section and an instruction section. The data section features integers in two�s complement 
notation. The instruction section is composed of a sequence of fixed-length instructions, each 
consisting of an identifying 4-bit opcode and an optional 4-bit operand. Operands represent 
absolute memory addresses. Execution starts at address 0000, which corresponds to the 
beginning of the instruction section. The fetching and execution of an instruction takes up 4 to 5 
phases, each requiring a single CPU cycle. Each phase is characterized by a collection of control 
signals output by the control unit to the rest of the system. There are a total of 18 distinct phases. 
The control unit can uniquely determine the next phase from the current phase. Although this 
system supports only the most basic CPU functionality and lacks many features found in modern 
CPUs (such as multiple addressing modes, variable-length instructions, and exception handling), 
it can be effectively used to illustrate a variety of fundamental computing concepts. Among these 
are the fetch-decode-execute cycle, sequential execution, conditional and unconditional 
branching, and iteration. 

1 Introduction 
The quality of education in science and technology for all undergraduates is becoming an area of 
increasing concern [1]. In the United States, the National Science Foundation is requesting that 
Science, Math, Technology and Engineering (SME&T) programs concentrate more effort on the 
80% of college students who are not SME&T majors.  In response, science and engineering 
faculty are developing courses intended to specifically address the needs of the non-SME&T 
students. A review of some historical background information and relevant new developments 
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has been compiled by Byars [2]. In these initiatives for non-SME&T students, a need exists for 
laboratory exercises to accompany the lecture component of the course. The work reported here 
describes a laboratory activity developed to accompany a technological literacy course for non-
science majors taught at Hope College [3,4]. 

The goal of the activity is to help non-SME&T students to learn the rudiments of how a 
computer processor works. This particular activity addresses basic computer architecture, the 
concept of an instruction set, algorithmic operations, and complex functions performed through 
permutations of simple operations. 

Lecture-based approaches exist to demonstrate the basic central processing unit (CPU), input, 
output, and memory of a computer. In addition, basic electronic laboratory microprocessor 
demonstrations are available. Our experience with non-SME&T students has shown that to 
capture and retain student interest, novel and amusing activities are essential. A lecture-based 
presentation of this topic was considered a problematic approach with non-SME&T students. It 
is difficult to keep this audience engaged in following the evolution of what may be deemed 
arcane algorithmic procedures. Use of a microprocessor electronics laboratory may appear overly 
complex and inaccessible to the non-SME&T student. 

2 Activity Requirements 
A primary requirement for the activity was to involve the students in an active and immediate 
manner in the operation of a simple computer. Another essential requirement was to develop an 
organization for the simulated computer that is simplified but not simplistic. A level of 
sophistication that is challenging but still understandable by the target audience was sought. 

Other requirements influenced the design of the activity. These were derived from the nature of 
laboratory projects for non-SME&T students. The activity must be able to be set up and taken 
down in less than approximately 15 minutes. No permanent installations are possible. Materials 
needed should be inexpensive and readily obtained. Total cost for any materials needed should 
not exceed US$ 200. The space needed should not exceed that of a gymnasium floor or small 
parking lot. Materials should be durable and be able to withstand some rough handling without 
the need for extensive repairs or adjustments. 

3 Organization of the Simulated Computer 
The organization of the simulated computer is shown in Fig. 1. The four major components are 
the central processing unit (CPU), memory, input device, and output device. These units are 
interconnected by a system of three buses: the address bus, data bus, and control bus. Memory 
and the input and output devices are atomic in that they are not subdivided into smaller 
components; each of them is simulated by a single human participant. The CPU has a complex 
internal organization and is simulated by a team of 13 participants. 

3.1 CPU 
The CPU performs all arithmetic and logic computations. In addition, it is responsible for 
coordinating the operation of the system�s components so that the overall task can be performed. 
The CPU is connected to each of the other components by one or two control lines, which 
collectively make up the control bus. These lines carry instructions from the CPU to the rest of 
the system. For example, an asserted W (�write�) line of the control bus instructs memory to 
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perform a memory write using the values on the data and address buses. Likewise, the CPU-
driven control bus governs the operation of the input and output devices. 

 

 

 

 

 

 

 

 

 

 

 

3.2 Memory 
Memory stores loaded programs (i.e., sequences of fixed-length instructions expressed in binary 
code) and temporary results of the CPU�s calculations (expressed in 2�s complement binary 
numbers). Memory comprises 16 individually addressable 8-bit storage cells, numbered 0000 
through 1111 in binary. Memory is connected to the data bus (which supplies the data to be 
written to memory or receives data being retrieved from memory) and to the address bus (which 
supplies the address of the memory location involved in a write or read operation). In addition, 
memory is connected to the CPU by means of two control lines, E and W. The E (�enable�) 
signal is used to activate memory prior to a read or write operation. When the E signal is 
asserted, the W (�write�) line indicates whether a write or a read operation is to be performed. 

3.3 Input/Output Devices 
The input and output devices make it possible for the computer system to communicate with the 
outside world. Each is connected to the data bus, which receives data from the input device and 
supplies data to the output device. The input and output devices are each activated by a control 
line from the CPU. By asserting a device�s control line, the CPU requests that it perform an input 
or output operation, resulting in data being placed on or read from the data bus. 

4 CPU Organization 
The architecture of the CPU (Fig. 2) features 13 components interconnected by an internal bus. 
Essential aspects of this design were borrowed from a basic CPU architecture described in 
Carpinelli [5]. The specific components of the CPU are the control unit, the arithmetic-logic unit 
(ALU), 5 registers, 5 tri-state buffers, and a NOR gate. 
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Fig. 1. System Organization. 
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Fig. 2: CPU Organization 
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Fig. 4. Control Signals, by Phase. Asserted signals are marked with an �x�. 
 

4.1 Control Unit 
The purpose of the control unit is to fetch and execute program instructions stored in memory. 
The control unit drives the control bus of the system. In addition, it uses internal control signals 
to operate the other 12 components of the CPU. Among these signals are the �enable� and 
�operation select� signals of the ALU; the �enable� signals of the tri-state buffers; and the �load� 
and �increment� signals of the registers. A major responsibility of the control unit is to assert the 
needed signals at the right time to enable the transfer of data within the CPU or between the CPU 
and memory or input/output devices. 

The control unit executes an instruction in several phases, each taking up a single clock cycle. 
The first 3 phases serve to fetch the instruction from memory to the CPU. The following one or 
two phases execute the newly fetched instruction, at which point control branches back to the in-
struction-fetch phases. Fig. 3 gives a diagram of control flow between phases.  

At the beginning of a phase, the control unit asserts a specified subset of the control lines. The 
lines remain asserted throughout the phase. There are a total of 18 distinct phases defined for the 
system. Fig. 4 features, for each phase, the subset of the control signals to be asserted during that 
phase. As the phase transition diagram (Fig. 3) shows, the next phase of the control unit is fully 
determined by its current phase. 
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4.2 ALU 
The purpose of the ALU is to compute the sum or bitwise conjunction of its two 8-pin inputs and 
place the result on the 8 output pins. The OP (�operation-select�) line driven by the control unit 
selects the specific operation (ADD or AND) to be performed. The ALU starts processing the 
data on the input pins as soon as the control unit asserts its E (�enable�) signal. 

5 Registers 
The CPU contains 5 registers. The registers store intermediate calculation results and CPU state 
information. The address register, AR, stores a memory address and is involved in all data 
transfer operations between the CPU and memory. The data register, DR, receives data from or 
places data on the data bus and is likewise used for transferring data between the CPU and 
memory. The program counter, PC, holds the address of the next instruction to be fetched from 
memory; its value is incremented every time an instruction is fetched. The accumulator, AC, 
supplies one of the arguments to, and receives the result of, every arithmetic/logic operation. AC 
is unique in that no other register is directly accessible by a program instruction. The instruction 
register, IR, holds the opcode (i.e., the identifying 4-bit binary pattern) of a newly fetched 
instruction. When an instruction is being executed, the control unit determines what signals to 
output based on the contents of the instruction register. 

Each register has 4 or 8 input pins and the same number of output pins. The input pins supply 
data to be stored in the register; the output pins receive the register�s current data. Each register 
is also equipped with an LD (�load�) signal controlled by the control unit. When its LD signal is 
asserted, the register reads in and stores the value currently on the input pins and places it 
immediately on the output pins. In addition, some registers have an INC (�increment�) signal 
used to increment the register�s value by 1. 

5.1 Tri-state Buffers 
The tri-state buffers enable the control unit to govern the CPU components� access to the shared 
internal bus. Bus arbitration is necessary to prevent data loss or corruption caused by several 
components outputting data to the bus at the same time. The outputs of the ALU or a register 
pass through a tri-state buffer before reaching the bus. A buffer allows this passage only when 
the control unit asserts its E (�enable�) input; at all other times, the buffer outputs infinite 
impedance. 

6 Instruction Set 
The instruction constitutes the basic unit of computation by the CPU. The computer�s instruction 
set comprises 9 instructions, each identified uniquely by a 4-bit opcode. Each instruction 
occupies 8 bits. The 4 high-order bits represent the opcode. The low-order 4 bits represent a 
memory address and serve as an argument to the instruction. If a given instruction does not 
require an argument, the address bits are ignored. A list of the 9 instructions and their respective 
formats is given in Fig. 5. 
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Fig. 5. Instruction Set. 

Two sample programs in the form of assembly-language code and the corresponding binary code 
are presented in Fig. 6 and Fig. 7. Program code consists of a sequence of instructions. If the 
program uses variables, their values are stored in memory locations following the program code. 
Programs are loaded into memory starting at address 0000, the memory location at which 
execution starts. 

Program Section: 
0000 LOAD 
1000 
0001 ADD 1001 
0010 ADD 1010 
0011 WRITE 
0100 EXIT 
 
Data Section: 
1000 3 
1001 7 
1010 15 
 

Memory Contents: 
0000 11001000 
0001 00010011 
0010 00011010 
0011 11110000 
0100 00000000 
0101 00000000 
0110 00000000 
0111 00000000 
1000 00000011 
1001 00000111 
1010 00001111 
1011 00000000 
1100 00000000 
1101 00000000 
1110 00000000 
1111 00000000 
 

Program Section: 
0000 READ 
0001 JUMPZ 
0101 
0010 ADD 1000 
0011 STORE 
1000 
0100 JUMP 0000 
0101 WRITE 
0110 EXIT 
 
Data Section: 
1000 0 

Memory Contents: 
0000 11100000 
0001 10010101 
0010 00011000 
0011 11011000 
0100 10000000 
0101 11110000 
0110 00000000 
0111 00000000 
1000 00000000 
1001 00000000 
1010 00000000 
1011 00000000 
1100 00000000 
1101 00000000 
1110 00000000 
1111 00000000 

Fig. 6. Sample Program #1. 
The program computes the sum of 
3, 7, and 15 and sends the result to 
the output device. 

Fig. 7. Sample Program #2. 
The program computes the sum of a 
sequence of numbers read from the 
input device (0 marks the end of the 
sequence) and sends the result to the 

output device. 
 
7 Hardware Implementation 
The hardware implementation was designed to be as simple as possible so that the workings 
would be apparent to the participants. Besides the human participants, it was desired to create the 

Name Format Function 
EXIT 0000@@@@ Terminates operation of the computer. 
ADD 0001@@@@ Adds the value stored at memory location @@@@ to the accumulator. 

AND 0010@@@@ Computes the bitwise AND of the value at memory location @@@@ and the 
accumulator. 

INC 0100xxxx Increments the accumulator by 1. 
JUMP 1000@@@@ Transfers control to memory location @@@@. 
JUMPZ 1001@@@@ Transfers control to memory location @@@@ if the accumulator equals zero. 
LOAD 1100@@@@ Loads the value stored at memory location @@@@ into the accumulator. 
STORE 1101@@@@ Stores the value of the accumulator at memory location @@@@. 
READ 1110xxxx Reads a value from the external input device and places it in the accumulator. 
WRITE 1111xxxx Writes the value of the accumulator to the external output device. 
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computer from essentially only switches, wire, and lights. The hardware implementation uses 
LED�s turned OFF or ON to indicate a 0 or 1 condition. Manually actuated 4 or 8 pole single 
throw switches are used to load data onto a bus. Other signals are activated using single pole 
switches. Construction is accomplished using solderless breadboards. Board-to-board 
connections are made using 14 conductor ribbon cables equipped with DIP connectors. This style 
of connector was chosen for its low cost and because it can be attached directly into the 
solderless breadboards. Since at most, only 8 conductors are required for the bus, some of the 
remaining 6 conductors are used to provide 5 VDC and ground to each unit. The physical layout 
closely follows that used to describe the CPU and computer organization given in Fig. 1 and Fig. 
2. 

8 Operation with Human Participants 
The simulation involves 16 individuals. Memory and the input and output devices are each 
operated by a single human participant. Simulation of the CPU involves 13 individuals: 1 to 
operate the control unit, 1 to operate the ALU, 5 to operate the 5 registers, and 5 to operate the 5 
tri-state buffers. An additional participant is needed to simulate the system clock (a crystal os-
cillator that synchronizes the actions of the system components and sets the pace for the overall 
operation). A simple sound-producing device, such as a gong, can be conveniently used for such 
a simulation. Two distinct sound patterns are needed to mark the �rising edge� of the clock (i.e., 
the beginning of the first half of the clock cycle) and the �falling edge� (i.e., the beginning of the 
second half of the clock cycle). 

Each participant is responsible for a specific task and has limited knowledge of how the rest of 
the system works. The overall complex behavior of the system implicitly emerges from many 
individuals� working on simple tasks in a coordinated fashion. While fifteen of the students are 
engaged in the simulation, the rest of the class can observe the operation of individual 
components or of the overall system. After a few minutes, the participants and observers switch 
roles. Specifications for the actions of each participant follow. 

Memory. If the E (�enable�) signal is asserted and the W (�write�) signal is not asserted, locate 
the memory cell at the address specified by the address bus and output its value onto the data 
bus. If the E and W signals are both asserted, locate the memory cell at the address specified by 
the address bus and write to it the value that is currently on the data bus (on the rising edge of the 
clock). 

Input device. If the E (�enable�) signal is asserted, place the next data item on the data bus. 

Output device. If the E (�enable�) signal is asserted, read in the value from the data bus on the 
rising edge of the clock. 

Control unit. Follow the control unit phase diagram (Fig. 3), changing phases at the end of 
every clock cycle. Immediately after entering a new phase, assert the corresponding set of 
signals, as specified by the control signal table (Fig. 4). 

ALU. When the E (�enable�) signal is asserted and the OP (�operation select�) signal is not 
asserted, perform the addition of the values on the data pins and output the result to the output 
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pins. When the E and OP signals are both asserted, compute the bitwise AND of the values on 
the data pins and output the result to the output pins. 

Registers. When the LD (�load�) signal is asserted, read in the value on the input pins on the 
rising edge of the clock. When the INC (�increment�) signal is asserted, increment the value by 1 
on the rising edge of the clock. 

Tri-state buffers. When the E (�enable�) signal is asserted, relay the incoming signals 
unchanged to the output pins. When the E (�enable�) signal is not asserted, output infinite 
impedance. 

Clock. Strike the gong at strictly periodic intervals. A single clock cycle encompasses two gong 
beats, one to mark the rising edge of the clock and another one to mark the falling edge. 

9 Results and Conclusions 
The simple computer described in this paper meets the stated goals of developing a 
demonstration of computer architecture in which non-SM&T majors, or other beginning 
students, can participate. The activity is complex enough to convey the essential features of a 
processor, but simple enough that little prior knowledge is needed by the students. This activity 
provides a novel approach to familiarizing students with CPU architecture. 
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