
Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

Session 2526

A Demonstration of CPU Organization Using a Simple
Apparatus and Sixteen People

Alexander A. Sherstov, Jr., John J. Krupczak, Jr.
Department of Computer Science/Department of Physics and Engineering

Hope College
Holland, MI 49423

Abstract
We have developed a laboratory activity to demonstrate the basic central processing unit (CPU),
input, output, and memory of a computer. The activity is intended to help beginning engineering
students or non-engineering students to understand basic computer architecture. The activity is
based on sixteen individuals who are assigned to conduct specific tasks in a manner analogous to
specific computer hardware elements. Tasks assigned to humans include: I/O, memory, control
unit, ALU, and registers. The central processing unit consists of five internal registers, an arith-
metic/logic unit, and a control unit. These components are interconnected via an internal bus.
Bus arbitration is implemented using tri-state buffers. The CPU communicates with memory and
the I/O devices through an 8-bit data bus, a 4-bit address bus, and a control bus. The instruction
set includes a total of 9 instructions designed to perform arithmetic/logic operations, control
flow, and I/O operations involving memory and external devices. Prior to simulation, computer
programs are converted to binary code and loaded into memory. Program code comprises a data
section and an instruction section. The data section features integers in two�s complement
notation. The instruction section is composed of a sequence of fixed-length instructions, each
consisting of an identifying 4-bit opcode and an optional 4-bit operand. Operands represent
absolute memory addresses. Execution starts at address 0000, which corresponds to the
beginning of the instruction section. The fetching and execution of an instruction takes up 4 to 5
phases, each requiring a single CPU cycle. Each phase is characterized by a collection of control
signals output by the control unit to the rest of the system. There are a total of 18 distinct phases.
The control unit can uniquely determine the next phase from the current phase. Although this
system supports only the most basic CPU functionality and lacks many features found in modern
CPUs (such as multiple addressing modes, variable-length instructions, and exception handling),
it can be effectively used to illustrate a variety of fundamental computing concepts. Among these
are the fetch-decode-execute cycle, sequential execution, conditional and unconditional
branching, and iteration.

1 Introduction
The quality of education in science and technology for all undergraduates is becoming an area of
increasing concern [1]. In the United States, the National Science Foundation is requesting that
Science, Math, Technology and Engineering (SME&T) programs concentrate more effort on the
80% of college students who are not SME&T majors. In response, science and engineering
faculty are developing courses intended to specifically address the needs of the non-SME&T
students. A review of some historical background information and relevant new developments

P
age 8.40.1

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

has been compiled by Byars [2]. In these initiatives for non-SME&T students, a need exists for
laboratory exercises to accompany the lecture component of the course. The work reported here
describes a laboratory activity developed to accompany a technological literacy course for non-
science majors taught at Hope College [3,4].

The goal of the activity is to help non-SME&T students to learn the rudiments of how a
computer processor works. This particular activity addresses basic computer architecture, the
concept of an instruction set, algorithmic operations, and complex functions performed through
permutations of simple operations.

Lecture-based approaches exist to demonstrate the basic central processing unit (CPU), input,
output, and memory of a computer. In addition, basic electronic laboratory microprocessor
demonstrations are available. Our experience with non-SME&T students has shown that to
capture and retain student interest, novel and amusing activities are essential. A lecture-based
presentation of this topic was considered a problematic approach with non-SME&T students. It
is difficult to keep this audience engaged in following the evolution of what may be deemed
arcane algorithmic procedures. Use of a microprocessor electronics laboratory may appear overly
complex and inaccessible to the non-SME&T student.

2 Activity Requirements
A primary requirement for the activity was to involve the students in an active and immediate
manner in the operation of a simple computer. Another essential requirement was to develop an
organization for the simulated computer that is simplified but not simplistic. A level of
sophistication that is challenging but still understandable by the target audience was sought.

Other requirements influenced the design of the activity. These were derived from the nature of
laboratory projects for non-SME&T students. The activity must be able to be set up and taken
down in less than approximately 15 minutes. No permanent installations are possible. Materials
needed should be inexpensive and readily obtained. Total cost for any materials needed should
not exceed US$ 200. The space needed should not exceed that of a gymnasium floor or small
parking lot. Materials should be durable and be able to withstand some rough handling without
the need for extensive repairs or adjustments.

3 Organization of the Simulated Computer
The organization of the simulated computer is shown in Fig. 1. The four major components are
the central processing unit (CPU), memory, input device, and output device. These units are
interconnected by a system of three buses: the address bus, data bus, and control bus. Memory
and the input and output devices are atomic in that they are not subdivided into smaller
components; each of them is simulated by a single human participant. The CPU has a complex
internal organization and is simulated by a team of 13 participants.

3.1 CPU
The CPU performs all arithmetic and logic computations. In addition, it is responsible for
coordinating the operation of the system�s components so that the overall task can be performed.
The CPU is connected to each of the other components by one or two control lines, which
collectively make up the control bus. These lines carry instructions from the CPU to the rest of
the system. For example, an asserted W (�write�) line of the control bus instructs memory to

P
age 8.40.2

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

perform a memory write using the values on the data and address buses. Likewise, the CPU-
driven control bus governs the operation of the input and output devices.

3.2 Memory
Memory stores loaded programs (i.e., sequences of fixed-length instructions expressed in binary
code) and temporary results of the CPU�s calculations (expressed in 2�s complement binary
numbers). Memory comprises 16 individually addressable 8-bit storage cells, numbered 0000
through 1111 in binary. Memory is connected to the data bus (which supplies the data to be
written to memory or receives data being retrieved from memory) and to the address bus (which
supplies the address of the memory location involved in a write or read operation). In addition,
memory is connected to the CPU by means of two control lines, E and W. The E (�enable�)
signal is used to activate memory prior to a read or write operation. When the E signal is
asserted, the W (�write�) line indicates whether a write or a read operation is to be performed.

3.3 Input/Output Devices
The input and output devices make it possible for the computer system to communicate with the
outside world. Each is connected to the data bus, which receives data from the input device and
supplies data to the output device. The input and output devices are each activated by a control
line from the CPU. By asserting a device�s control line, the CPU requests that it perform an input
or output operation, resulting in data being placed on or read from the data bus.

4 CPU Organization
The architecture of the CPU (Fig. 2) features 13 components interconnected by an internal bus.
Essential aspects of this design were borrowed from a basic CPU architecture described in
Carpinelli [5]. The specific components of the CPU are the control unit, the arithmetic-logic unit
(ALU), 5 registers, 5 tri-state buffers, and a NOR gate.

CPU

Memory

Input Device

Output Device

Address Bus

Data Bus

Control Bus

0

3

0

0
7

E

0 7 7

E

E
W

Fig. 1. System Organization.

P
age 8.40.3

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

Fig. 2: CPU Organization

Ad
dr

es
s

Bu
s

D
at

a
Bu

s

C
on

tro
l B

us

0 7
 0 3

AR
 IN OUT

 IR
 IN OUT

E

Control Unit

0

0

4

0

0

0

7 0

0 7

0 7
0

4 7

PC
 IN OUT

 AC
 IN OUT

 DR
 IN OUT

 ALU OUT

E

E

 E

E

E

FETCH1

FETCHADD1 AND1 JUMP INC

AND2 ADD2

LOAD1

READ2

READ1

STORE

STORE

WRITE

WRITE

EXIT

ADD
JUMP INC

JUMPZ
(Z=0)

READ AND WRITE
STORE LOAD

EXIT

JUMPZ
(Z=1)

FETCH3

LOAD2

Fig. 3. Control Unit Phase Transition Diagram.
The initial phase is FETCH1. Labels on the arrows refer to the
name of the instruction being processed.

P
age 8.40.4

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

Fig. 4. Control Signals, by Phase. Asserted signals are marked with an �x�.

4.1 Control Unit
The purpose of the control unit is to fetch and execute program instructions stored in memory.
The control unit drives the control bus of the system. In addition, it uses internal control signals
to operate the other 12 components of the CPU. Among these signals are the �enable� and
�operation select� signals of the ALU; the �enable� signals of the tri-state buffers; and the �load�
and �increment� signals of the registers. A major responsibility of the control unit is to assert the
needed signals at the right time to enable the transfer of data within the CPU or between the CPU
and memory or input/output devices.

The control unit executes an instruction in several phases, each taking up a single clock cycle.
The first 3 phases serve to fetch the instruction from memory to the CPU. The following one or
two phases execute the newly fetched instruction, at which point control branches back to the in-
struction-fetch phases. Fig. 3 gives a diagram of control flow between phases.

At the beginning of a phase, the control unit asserts a specified subset of the control lines. The
lines remain asserted throughout the phase. There are a total of 18 distinct phases defined for the
system. Fig. 4 features, for each phase, the subset of the control signals to be asserted during that
phase. As the phase transition diagram (Fig. 3) shows, the next phase of the control unit is fully
determined by its current phase.

Control Signals

Phases Operations

AR
_L
OA
D

AR
_B
US

PC
_L
OA
D

PC
_B
US

PC
_I
NC

DR
_L
OA
D

DR
_B
US

AC
_L
OA
D

AC
_B
US

AC
_I
NC

IR
_L
OA
D

AL
U_
BU
S

AL
U_
OP

AL
U_
EN
AB
LE

ME
M_
EN
AB
LE

ME
M_
WR
IT
E

IN
P_
EN
AB
LE

OU
T_
EN
AB
LE

FETCH1 PC à AR x x
FETCH2 M à DR, PC++ x x x

FETCH3 DR[7-4]àIR,
DR[3-0]àAR x x x

ADD1 M à DR x x
ADD2 AC + DR à AC x x x
AND1 M à DR x x
AND2 AC & DR à AC x x x x
INC AC++ x
JUMP AR à PC x x
LOAD1 M à DR x x
LOAD2 DR à AC x x
STORE1 AC à DR x x
STORE2 DR à M x x x
READ1 IN à DR x x
READ2 DR à AC x x
WRITE1 AC à DR x x
WRITE2 DR à OUT x

P
age 8.40.5

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

4.2 ALU
The purpose of the ALU is to compute the sum or bitwise conjunction of its two 8-pin inputs and
place the result on the 8 output pins. The OP (�operation-select�) line driven by the control unit
selects the specific operation (ADD or AND) to be performed. The ALU starts processing the
data on the input pins as soon as the control unit asserts its E (�enable�) signal.

5 Registers
The CPU contains 5 registers. The registers store intermediate calculation results and CPU state
information. The address register, AR, stores a memory address and is involved in all data
transfer operations between the CPU and memory. The data register, DR, receives data from or
places data on the data bus and is likewise used for transferring data between the CPU and
memory. The program counter, PC, holds the address of the next instruction to be fetched from
memory; its value is incremented every time an instruction is fetched. The accumulator, AC,
supplies one of the arguments to, and receives the result of, every arithmetic/logic operation. AC
is unique in that no other register is directly accessible by a program instruction. The instruction
register, IR, holds the opcode (i.e., the identifying 4-bit binary pattern) of a newly fetched
instruction. When an instruction is being executed, the control unit determines what signals to
output based on the contents of the instruction register.

Each register has 4 or 8 input pins and the same number of output pins. The input pins supply
data to be stored in the register; the output pins receive the register�s current data. Each register
is also equipped with an LD (�load�) signal controlled by the control unit. When its LD signal is
asserted, the register reads in and stores the value currently on the input pins and places it
immediately on the output pins. In addition, some registers have an INC (�increment�) signal
used to increment the register�s value by 1.

5.1 Tri-state Buffers
The tri-state buffers enable the control unit to govern the CPU components� access to the shared
internal bus. Bus arbitration is necessary to prevent data loss or corruption caused by several
components outputting data to the bus at the same time. The outputs of the ALU or a register
pass through a tri-state buffer before reaching the bus. A buffer allows this passage only when
the control unit asserts its E (�enable�) input; at all other times, the buffer outputs infinite
impedance.

6 Instruction Set
The instruction constitutes the basic unit of computation by the CPU. The computer�s instruction
set comprises 9 instructions, each identified uniquely by a 4-bit opcode. Each instruction
occupies 8 bits. The 4 high-order bits represent the opcode. The low-order 4 bits represent a
memory address and serve as an argument to the instruction. If a given instruction does not
require an argument, the address bits are ignored. A list of the 9 instructions and their respective
formats is given in Fig. 5.

P
age 8.40.6

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

Fig. 5. Instruction Set.

Two sample programs in the form of assembly-language code and the corresponding binary code
are presented in Fig. 6 and Fig. 7. Program code consists of a sequence of instructions. If the
program uses variables, their values are stored in memory locations following the program code.
Programs are loaded into memory starting at address 0000, the memory location at which
execution starts.

Program Section:
0000 LOAD
1000
0001 ADD 1001
0010 ADD 1010
0011 WRITE
0100 EXIT

Data Section:
1000 3
1001 7
1010 15

Memory Contents:
0000 11001000
0001 00010011
0010 00011010
0011 11110000
0100 00000000
0101 00000000
0110 00000000
0111 00000000
1000 00000011
1001 00000111
1010 00001111
1011 00000000
1100 00000000
1101 00000000
1110 00000000
1111 00000000

Program Section:
0000 READ
0001 JUMPZ
0101
0010 ADD 1000
0011 STORE
1000
0100 JUMP 0000
0101 WRITE
0110 EXIT

Data Section:
1000 0

Memory Contents:
0000 11100000
0001 10010101
0010 00011000
0011 11011000
0100 10000000
0101 11110000
0110 00000000
0111 00000000
1000 00000000
1001 00000000
1010 00000000
1011 00000000
1100 00000000
1101 00000000
1110 00000000
1111 00000000

Fig. 6. Sample Program #1.
The program computes the sum of
3, 7, and 15 and sends the result to
the output device.

Fig. 7. Sample Program #2.
The program computes the sum of a
sequence of numbers read from the
input device (0 marks the end of the
sequence) and sends the result to the

output device.

7 Hardware Implementation
The hardware implementation was designed to be as simple as possible so that the workings
would be apparent to the participants. Besides the human participants, it was desired to create the

Name Format Function
EXIT 0000@@@@ Terminates operation of the computer.
ADD 0001@@@@ Adds the value stored at memory location @@@@ to the accumulator.

AND 0010@@@@ Computes the bitwise AND of the value at memory location @@@@ and the
accumulator.

INC 0100xxxx Increments the accumulator by 1.
JUMP 1000@@@@ Transfers control to memory location @@@@.
JUMPZ 1001@@@@ Transfers control to memory location @@@@ if the accumulator equals zero.
LOAD 1100@@@@ Loads the value stored at memory location @@@@ into the accumulator.
STORE 1101@@@@ Stores the value of the accumulator at memory location @@@@.
READ 1110xxxx Reads a value from the external input device and places it in the accumulator.
WRITE 1111xxxx Writes the value of the accumulator to the external output device.

P
age 8.40.7

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

computer from essentially only switches, wire, and lights. The hardware implementation uses
LED�s turned OFF or ON to indicate a 0 or 1 condition. Manually actuated 4 or 8 pole single
throw switches are used to load data onto a bus. Other signals are activated using single pole
switches. Construction is accomplished using solderless breadboards. Board-to-board
connections are made using 14 conductor ribbon cables equipped with DIP connectors. This style
of connector was chosen for its low cost and because it can be attached directly into the
solderless breadboards. Since at most, only 8 conductors are required for the bus, some of the
remaining 6 conductors are used to provide 5 VDC and ground to each unit. The physical layout
closely follows that used to describe the CPU and computer organization given in Fig. 1 and Fig.
2.

8 Operation with Human Participants
The simulation involves 16 individuals. Memory and the input and output devices are each
operated by a single human participant. Simulation of the CPU involves 13 individuals: 1 to
operate the control unit, 1 to operate the ALU, 5 to operate the 5 registers, and 5 to operate the 5
tri-state buffers. An additional participant is needed to simulate the system clock (a crystal os-
cillator that synchronizes the actions of the system components and sets the pace for the overall
operation). A simple sound-producing device, such as a gong, can be conveniently used for such
a simulation. Two distinct sound patterns are needed to mark the �rising edge� of the clock (i.e.,
the beginning of the first half of the clock cycle) and the �falling edge� (i.e., the beginning of the
second half of the clock cycle).

Each participant is responsible for a specific task and has limited knowledge of how the rest of
the system works. The overall complex behavior of the system implicitly emerges from many
individuals� working on simple tasks in a coordinated fashion. While fifteen of the students are
engaged in the simulation, the rest of the class can observe the operation of individual
components or of the overall system. After a few minutes, the participants and observers switch
roles. Specifications for the actions of each participant follow.

Memory. If the E (�enable�) signal is asserted and the W (�write�) signal is not asserted, locate
the memory cell at the address specified by the address bus and output its value onto the data
bus. If the E and W signals are both asserted, locate the memory cell at the address specified by
the address bus and write to it the value that is currently on the data bus (on the rising edge of the
clock).

Input device. If the E (�enable�) signal is asserted, place the next data item on the data bus.

Output device. If the E (�enable�) signal is asserted, read in the value from the data bus on the
rising edge of the clock.

Control unit. Follow the control unit phase diagram (Fig. 3), changing phases at the end of
every clock cycle. Immediately after entering a new phase, assert the corresponding set of
signals, as specified by the control signal table (Fig. 4).

ALU. When the E (�enable�) signal is asserted and the OP (�operation select�) signal is not
asserted, perform the addition of the values on the data pins and output the result to the output

P
age 8.40.8

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education

pins. When the E and OP signals are both asserted, compute the bitwise AND of the values on
the data pins and output the result to the output pins.

Registers. When the LD (�load�) signal is asserted, read in the value on the input pins on the
rising edge of the clock. When the INC (�increment�) signal is asserted, increment the value by 1
on the rising edge of the clock.

Tri-state buffers. When the E (�enable�) signal is asserted, relay the incoming signals
unchanged to the output pins. When the E (�enable�) signal is not asserted, output infinite
impedance.

Clock. Strike the gong at strictly periodic intervals. A single clock cycle encompasses two gong
beats, one to mark the rising edge of the clock and another one to mark the falling edge.

9 Results and Conclusions
The simple computer described in this paper meets the stated goals of developing a
demonstration of computer architecture in which non-SM&T majors, or other beginning
students, can participate. The activity is complex enough to convey the essential features of a
processor, but simple enough that little prior knowledge is needed by the students. This activity
provides a novel approach to familiarizing students with CPU architecture.

10 Acknowledgments
The authors would like to thank the faculty and staff of the Hope College Department of Physics
and Engineering, and the Hope College Science Division for their contributions to this work.
This research was supported in part by the National Science Foundation under grant DUE-
9752693.

References

[1] National Science Foundation, �Shaping The Future: New Expectations for Undergraduate Education in Science,
Mathematics, Engineering, and Technology, NSF 96-139, October 1996.

[2] N. A. Byars, �Technological Literacy Classes: The State of the Art,� Journal of Engineering Education, January
1998. 53-61.

[3] J. J. Krupczak, Jr., �Science and Technology of Everyday Life: A course in technology for liberal arts students,�
Proceedings of the 1996 American Society for Engineering Education Annual Conference, Washington, D.C.,
June 23-26, 1996, session 2261.

[4] J. J. Krupczak, Jr. "Demystifying Technology," ASEE PRISM, October 1997. 30-34.
[5] J. D. Carpinelli, Computer Systems Organization & Architecture, Addison-Wesley, October 2000.

Biographical Information

ALEXANDER A. SHERSTOV JR.
Alexander Sherstov is currently a senior majoring in computer science at Hope College in Holland, Michigan.

JOHN KRUPCZAK, JR.
John Krupczak, Jr., is an Associate of Engineering at Hope College in Holland, Michigan. He has a BS degree in
physics from Williams College and MS and Ph.D. degrees in mechanical engineering from the University of
Massachusetts at Amherst. His email address is: krupczak@hope.edu.

P
age 8.40.9

