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Abstract 
 
A feedback control system for incorporation into an Engineering Technology controls laboratory 
has been developed.  The purpose of developing a working control system is to reinforce controls 
theory taught in the classroom.  A control system for positioning an air cylinder driven load 
platform was selected for the design.  By controlling the height of the column of air in the air 
cylinder and regulating the pressure applied to the air cylinder piston, the platform could be 
positioned anywhere within the range of the air cylinder travel.  To demonstrate the control 
capability of the system, random load disturbances were generated by adding and removing 
laboratory weights to the platform, with the desired setpoint position maintained.  The 
instructional benefit of selecting a position control system was that the reaction of the control 
system could be readily observed as the platform returned to the set point position.   
 
The PID controller gain constants were found first by using the Ziegler-Nichols Method of 
controller design.  In this method, the system gain is increased to the point of oscillation.  The 
gain for oscillation and frequency of oscillation will be inserted into a table of tuning rules to 
determine the value of PID controller constants. 
  
Next, the dynamics of individual components of the system were characterized through 
experimentation and modeling.  A Laplace transform transfer function representation of the 
system was found and then analyzed using simulation software and root-locus analysis.  The gain 
for oscillation and frequency of oscillation were determined from the root-locus plot.  The 
Ziegler-Nichols Tuning rules where then re-applied to find the value of the PID controller 
constants. 
 
A comparison of system performance using experimentally determined PID constants and 
theoretically determined PID constants was presented.  Ideally, the constants and resulting 
system response using both methods would be equal.  The time domain closed loop response of 
the theoretical model was found by computer simulation and then compared to data taken from 
the actual system. 
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I. Introduction 
 
A block diagram of the load platform positioning system is shown in Figure 1-1.  The data 
acquisition system consists of a ZENITH personal computer, BURR-BROWN computer 
instrumentation hardware and LABTECH NOTEBOOK data acquisition and control software.  
LABTECH NOTEBOOK is a graphical user interface that allows data acquisition and control, 
using commonly available computer instrumentation boards, without the need for programming.  
The portions of the control loop residing in the data acquisition and control system are the 
setpoint input, setpoint and feedback summing node, and PID controller.  The “plant” or system 
being controlled is a NORGREN E/P converter(a voltage command to pressure command 
conversion device) and a vertically oriented Speedaire air-cylinder driving a load platform.  A 
voltage proportional to the position of the platform is fed back to the PID controller using a 
MIDORI linear potentiometer.     
 
Background 
 
In the general configuration of a feedback control system, the output signal is fed back and 
subtracted from the input signal, creating an error signal.  The error signal then serves as the 
input for the system controller which processes the error and generates a control signal to correct 
the output of the system.  One type of controller frequently used in analog industrial closed loop 
control applications is the PID controller.  The control signal of the PID controller is generated 
by summing scaled amounts of the: error, integral of the error, and the derivative of error signals. 
 

 
 Figure 1-1:  Load Platform Position Control System 

 
Proportional control is the most basic control mode of the PID controller.  The control signal 
generated for corrective action of the system is proportional to the error.  Using only proportional 

Weights 
Load 
Platform 
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control in a system can produce large steady-state errors in its operating point when disturbances 
are large because the net correction offered by the error signal and controller gain frequently is 
not capable of bringing the system to the desired set point.  Increasing the controller proportional 
gain will decrease error but there is a limit to this adjustment because too much gain has the 
potential of sending the system into oscillation.  Using PI (proportional plus integral) control 
solves the offset problem of the proportional-only control system by adding extra output effort 
only when an error exists.  The action of the integral term is to sum the error signal over time 
until a large enough correction signal is generated to offset the large disturbance, and force the 
system error to zero.  The effect of the proportional control working in conjunction with the 
integral control is to improve the steady state response. 
In systems where an improvement in frequency response is needed, derivative control action can 
be added to the proportional plus integral control.  This speeds up the response of the controller 
because it responds to the rate of change of error, and can make corrections before the error 
reaches a large value.  Derivative control has the net effect of adding damping to the system.  If 
the gain of the derivative term is higher than necessary, noise spikes that frequently occur on the 
error signal can be amplified and cause saturation or overloading of the controller. 
 
The response characteristics of the system can be optimized by the choice of  PID controller 
constants.  Determining these constants is also called controller tuning.  The classic method of 
controller tuning, known as the, “Ziegler-Nichols Method of Automatic Controller Tuning”, will 
be applied to the pneumatic cylinder positioning system.  In this method, the value of the 
proportional gain that causes closed-loop oscillation, and the frequency of that oscillation, are 
experimentally determined.  These values are then used to calculate the PID constants by the 
tuning rules set forth by Ziegler and Nichols. 
 
The Ziegler-Nichols Method may also be used if the transfer function of the system is already 
known prior to the tuning process.  Component characteristics can be measured and used to 
develop models of the system components.  From these component models, a complete system 
model is found and then analyzed using linear systems analysis.  The root locus method can be 
used to find the closed-loop gain that would cause oscillation, together with the frequency of 
oscillation of the closed loop model.  Then, as in the experimental method, the gain and 
frequency can be entered into the Ziegler-Nichols tuning rules to determine the appropriate PID 
controller constants. 
 
Assumptions 
 
It is assumed that the positioning system can be represented as a linear system.  This permits use 
of the Ziegler-Nichols Method of Controller tuning and Laplace transfer function analysis.  
However, due to the compressibility of air and the stiction (Coulomb friction) of the piston seal, 
non-linearities do exist in the pneumatic system.  The assumption was made that these non-
linearities are negligible, thus tuning rules and linear analysis could be used.  As stated by Ogata, 
“Although all physical systems demonstrate non-linear characteristics over a range, if the range 
of the deviation of system variables is small enough then the system can be treated as linear”  
[Ref 1]. 
 

P
age 6.30.3



 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition     
Copyright 2001, American Society for Engineering Education 

 

Additionally, the PID controller is implemented using a digital computer.  In strict analysis, the 
sampling process of the digital computer causes the system to be classified as a sampled-data 
system.  However, when the sample period of the digital controller is very short compared to the 
time constant of the system, the system can be analyzed as if it were continuous.  In the case of 
the load positioning system, the computer can sample much faster than the mechanical 
components can react, thus continuous methods are applied. 
 
II. Ziegler-Nichols PID Controller Tuning Rules 
 
The objective of tuning a PID controller is to compensate the control loop so that the control 
system can behave in an optimal manner, which means that it will exhibit satisfactory transient 
response and small steady state offset.  Tuning means to adjust the controller parameters to 
produce enough change in the control loop steady-state and dynamic characteristics to 
compensate for the fixed characteristics of the plant.  The controller parameters are defined as 
the proportional gain P, the integral time Ti the derivative time Td.  The proportional gain is the 
fraction of the error signal generated by subtracting the output of the system from the operating 
set point.  The integral time is the amount of time it takes the integral of error to reach the same 
magnitude as the proportional error.  The derivative time represents the amount of gain added 
from the rate change of error, and is given the designation time since it is a simplification of the 
units in an expression: 
 

(controlled variable) per (controlled variable per time) =  time 
 

 A block diagram of a closed loop control system using a PID controller is shown in Figure 2-1. 
Controller parameters can be found by mathematical analysis and modeling of the plant for its 
transfer function and then calculating the parameters of the PID transfer function.  However, in 
many applications it is not practical to attempt to model a plant mathematically due to the 
complexity of the system and time required to develop an accurate model.  Fortunately, there are 
numerous experimental methods and auto-tuning devices available for finding the PID constants 
in an expedient manner without the need for detailed modeling.  The objective of this chapter is 
to illustrate one of these methods. 
 
                           r(t)               e(t)                               o(t)                                              c(t) 
                       
 
 

 
    
  
 
where:  r(t) = operating set point 
    e(t) = error  (defined as set point - feedback) 

    o t P e t
T

e t dt T
de

dti

t

d( ) ( ) ]= +
−∞∫ ( ) +[ 1

   (1) 

    c(t) = system output 

Figure 2-1:  Control System with PID Controller  
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An experimental tuning method that was developed during the marketing of the early PID 
controllers and remains in use today is the Ziegler-Nichols method.  This method was developed 
by John Ziegler and Nathaniel Nichols at Taylor Instruments, who designed the Fulscope, the 
first controller to include derivative control with proportional and integral control.  They 
published their work in the 1942 Transactions of the American Society of Mechanical Engineers 
, [13] called “Optimum Settings for Automatic Controllers”.  The goal of the article was to 
provide the controls engineer with a quick and efficient method of setting up PID controllers on 
existing installations, by doing tests on the plant in the field.  Two approaches to controller 
tuning were presented in this article, both with the objective of producing a nominal 25% 
overshoot of the operating set point when the closed loop system was subjected to a step 
impulse.  Figure 2-2 illustrates the response output c(t) of an optimally tuned closed loop system 
that has been subjected to a step impulse. 

 

Figure 2-2:  Closed Loop Step Response of an Optimally Tuned System 

In the first method the integral and derivative effects are disabled by setting the integral time Ti  
to infinity and the derivative time Td  to 0.  The proportional gain P is increased until the closed 
loop control system just reaches the point of instability and produces continuous oscillation as 
shown in Figure 2-3. 

 
Figure 2-3:  Sustained Oscillation with Period Tu 

 
 
 
 
 

Tu 
c(t) 

t 
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The proportional gain PU and period of oscillation TU  at this point of instability are used to 
determine the values of the PID constants using the tuning rules set forth by Ziegler and Nichols 
in Table 2-1. 
 

Ziegler-Nichols Tuning Rule Based on Critical Gain PU  
and Critical Period TU  (First Method)  

Type of 
Controller 

Gain 
P 

Integral 
Time 

Ti 

Derivative 
Time 

Td 
P     0.5PU ∞  0 

 
PI 0.45PU 1

12.
TU

 0 
 
 

PID 0.6PU 0.5TU 0.125TU 

 
  

In the second method, the control loop is opened, the plant is subjected to a unit step and the 
resulting reaction curve is observed.  If the system response to the step input resembles an S-
shaped curve, the lag time L and time constant  T can be measured, as shown in Figure 2-4.  If 
the reaction curve does not resemble an S-shaped curve, the second method cannot be used to 
find the controller PID constants.  
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The data is used to determine the appropriate parameter values for the PID controller using the 
tuning rules for step response testing in Table 2-2 lists. 
 

Ziegler- Nichols Tuning Rules Based on Step 
Response of Plant (Second Method) 

Type of 
Controller 

Gain 
P 

Integral 
Time 

Ti 

Derivative 
Time 

Td 
P T

L  
∞  0 

 
 

PI 0 9.
T

L  
L

0 3.  
0 
 
 

PID 12.
T

L
 2L 0.5L 

Table 2-2 
 

Zigler and Nichols determined the tuning rules of Tables 2-1 and 2-2 by testing many systems, 
and observing that these constants, on the average, produced optimal results.  Actual response of 
a given system could result in a set point overshoot range of 10% to 60%.  However, the above 
controller settings give a starting point at which the control system becomes functional and can 
be fine tuned if needed. 
 

Tuning the Pneumatic Cylinder Positioning System PID Controller  

Figure 2-4: Determination of Plant Lag Time and Time Constant 

c(t) 
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The pneumatic cylinder positioning system performance specifications were to maintain the 
operating set point over a range of loading disturbances between 5 and 45 lb. that can occur at 
random.  The PID controller gives the system the capability to handle a range of loads because 
the integral term integrates the error term until the system output is at the setpoint with no steady 
state error. 
 
Another benefit of using the PID controller in this design is that it can also respond to the rate of 
change of error and provide corrective output generated by the derivative term.  When the error 
suddenly increased, with rapid placement of weight of 10 lb. or more on the loading platform, an 
abrupt change in the output signal was generated as the integral term quickly ramped to correct 
the system output.  These changes have the potential for causing system instability.  The 
derivative output contribution can start to make system corrections before the error reaches the 
oscillation causing value.  The derivative controller effort to counteract rapid movement of the 
load platform effectively added dampening to the system. 
 
The PID controller parameters were found by the first method of Ziegler and Nichols, where the 
closed loop system was tested and the amount of proportional gain that caused oscillation was 
determined.  The second method, in which the process reaction curve is found, was not used 
because the rapid and violent acceleration of the pneumatic cylinder when operated in open loop 
mode did not produce an S-shaped curve.  Using the closed loop method, the value of 
proportional gain P was changed in the PID controller until the ultimate gain value PU  was 
reached.  The period of oscillation TU was observed on the data acquisition system monitor. 
 
The PID control algorithm written in the LABTECH NOTEBOOK data acquisition and control 
software has a slightly different form than Equation 1 used by Ziegler and Nichols in that the 
proportional gain is factored into the integral and derivative time terms changing them from time 
parameters into gain parameters.  The alternate form of the controller equation is shown in 
Equation 2.  A conversion of the tuning rules of Table 1 was made by comparing terms in 
Equation 1 (repeated following) and Equation 2. 
 
 
Original form:  

    o t P e t
T

e t dt T
de

dti

t

d( ) ( ) ]= +
−∞∫ ( ) +[ 1

   (1)  

 
LABTECH NOTEBOOK form:  

    o t Pe t I e t dt D
de

dt

t
( ) ( ) ( )= + +

−∞∫    (2) 

 
Comparing the two equations: 

    I
P

T
D P T

i
d= = ∗      (3)    and            (4)  

Using expressions 3 and 4, the controller tuning rules of Table 2-3 are converted into a 
compatible format for the LABTECH NOTEBOOK form of the controller equation.  The values 
entered into into the PID output control block were determined from Table 2-3 following: 
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Ziegler-Nichols Tuning Rule Based on Critical Gain PU  
and Critical Period TU  (First Method) LABTECH 
NOTEBOOK Form 

Type of 
Controller 

Proportional 
Gain 

P 

Integral 
Gain 

I 

Derivative 
Gain 

D 
P     0 5. PU  0  0  

 
PI 0 45. PU  

0 54.
P

T
U

U







  0  

 

PID 0 6. PU  
12.

P

T
U

U







  ( )0 075. P TU U  

Table 2-3 
 

 
Test Procedure 
 
The anticipated load range of the system was 5 - 45 lb., with a value of 30 lb. selected to 
determine the tuning parameters.  The ultimate gain PU and the ultimate period TU were 
determined and then used to find the controller constants.  The system was then operated at 
various loads to verify proper operation. The following procedure lists the steps for tuning the 
PID controller. 
 

1. The LABTECH NOTEBOOK Software was configured for an input voltage channel to 
read the feedback voltage of the linear potentiometer, an input voltage channel to read the 
setpoint input and a PID voltage output analog channel to supply the control voltage to 
the E/P(voltage to pressure converter) unity gain buffer.  A block diagram of the test 
setup is shown in Figure 2-5. 
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Setpoint
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  Input
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Channel 5
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     PID
Controller

DATA ACQUISITION SYSTEM SOFTWARE CONFIGURATION

Feedback Voltage
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P
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Output Driver

EXTERNAL SYSTEM

PID Output Voltage

Load Platform

     Linear 
Potentiometer

 Voltage to Pressure
        Converter

Operating Setpoint

Setpoint Scale
 for Graphical
     Display

Scale to
Inches for
Graphical
Display

Control System Interface

 
 
 
 

2. The channels setup menu was entered and the I and D constants in the control loop output 
menu block to were set to zero.  The P constant was set to 1.5 for the first test of control 
loop stability.  The set point is was set to 7 volts in the output control block to position 
the load platform high enough to prevent the cylinder from hitting the bottom bumper 
during oscillation.  

 
3. The manual regulator was set to 30 psi.  This regulator supplies the E/P with source 

pressure. 
 

4. Three 10 lb. weights were placed on the load platform. 
 

5. With the position control system started, the PC monitor will display an upper window 
for PID controller output to the E/P driver and a lower window for the PID controller 
input from the linear potentiometer. 

 
6. The platform raised but did not go into oscillation when disturbed by pushing it 

downward then quickly releasing.  The three 10 lb. weights were removed carefully and 
the control run terminated.  

 
7. The channels setup menu was returned to and the output block menu modified to have a 

proportional gain P of 1.8.   
 

8. The three 10 lb. weights were replaced. 

Figure 2-5: LABTECH NOTEBOOK Channels Setup for Load Platform Position Control System 
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9. The control loop was started and the load platform allowed to settle into position. 

With a gentle push in a downward direction and a quick release, the platform attempted 
to oscillate but movement stopped after a few cycles.  The proportional gain P was still 
not large enough to cause sustained oscillations. 

 
10. The three 10 lb. weights were removed carefully and the control run terminated. 

 
11. The Channels Setup menu was returned to where the output block menu was modified to 

have a proportional gain P of 1.95. 
 

12. The three 10 lb. weights were replaced. 
 

13. The position control system was started with P = 1.95, the platform went into a slow 
constant oscillation after a gentle downward push and quick release.  This value of P for 
constant oscillation was recorded as the ultimate gain value of PU  = 1.95 

 
14. The platform was allowed to oscillate for 6 seconds.  Ten cycles occurred during the 6 

second interval.  With this information, the ultimate period TU was determined by 
dividing six seconds by the number of cycles:  TU  = (6 seconds) / (10 cycles) = 0.6 s 

 
15. With the values of TU and PU  obtained,  the controller constants were calculated in the 

LABTECH format of the Ziegler - Nichols Tuning Rules for quarter cycle decay 
response:           P = 0.6 PU         I = 1.2(PU   /TU )        D = 0.075(PU )(TU )                    
The controller constants were:                                   
P = (0.6)(1.95) = 1.17      I = 1.2 (1.95/0.6 ) = 3.9     D =  0.075(1.95)(0.6) =  0.088 

 
16. The Ziegler-Nichols PID controller tuning method is an approximation and sometimes it 

is necessary to make final adjustments after the performance of the system is observed.  
Operation of this system at a weight near 10 lb. caused the platform to oscillate about the 
set point due to the rapid ramping of the integrator function.  To eliminate this problem, 
the I constant was reduced to 3.00.  The PID constants were set to P = 1.17, I = 3.00 and 
D = 0.088. 

 
17. The position control system was tested with loads from 5 - 45 lb. and remained stable 

while returning to the desired operating point.  
 
 
 
III. Analysis of System 
 
In the previous section, the PID controller constants required for stable operation of the 
pneumatic position control system were found using the Ziegler-Nichols Tuning Rules.  The 
“ultimate gain” Pu, the value of proportional gain that causes oscillation of the closed loop 
system was found.  The “ultimate period” Tu, the period of the oscillation at the gain Pu was 
noted and then Tu and Pu were used in the Ziegler-Nichols tables of tuning rules to find the 
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optimum PID controller constants.  In this section, the dynamic behavior of the system 
components will be modeled using experimental data and Laplace Transforms.  The components 
will be combined into a block diagram model of the system, and then simplified by block 
diagram algebra into a single transfer function that is the ratio of two polynomials.  This open 
loop transfer function was then analyzed using MATLAB’s root-locus analysis program “rlocus” 
to determine the gain for oscillation Pu and the frequency of oscillationω from which the 
ultimate period Tu will be derived.(The variable names Tu and Pu are used to represent the same 
variables in the actual and simulated system although their values are not necessarily the same 
for each system)  In terms of a root-locus diagram, Pu is the value of gain K that causes the roots 
of the closed-loop transfer function equation to enter the right half plane.  Using SIMULINK, the 
closed-loop system will be simulated, using the theoretical gain for oscillation Pu, to determine 
the closed-loop frequency of oscillation corresponding to the value of gain in the root-locus 
analysis.  As with the actual system, the Ziegler-Nichols tuning rules use Pu and Tu to find the 
PID controller constants for stable operation of the simulated system. 
 
A piping and instrumentation drawing of the load platform control system is shown in Figure 3-
1.  The components modeled in the analysis are the E/P converter, load platform air cylinder and 
feedback potentiometer.  The characteristics of the E/P converter that will be determined are its 
internal resistance and voltage to pressure gain ratio.  Parameters modeled in the load platform 
air cylinder are: the air flow generated by the movement of the air cylinder piston and 
capacitance of the volume of air underneath the piston, and the force balance relationship 
between piston force and the load force.  The linear potentiometer, in the feedback loop, is 
modeled as a gain with a zero offset. 
 

 
vo 

PID Controller 
vf 

x 

Potentiometer 

Po Fp 

R 

Qt 

Fw 

E/P Converter 

Air Cylinder 

 
Figure 3-1:  Piping and Instrumentation Diagram 

 
The load platform position control system was modeled and analyzed using lumped-parameter 
analysis.  This method of analysis applies to linear systems that can be represented by ordinary 
differential equations and their corresponding Laplace Transforms. 
   
 
Description of Block Diagram 
 

Source 
Pressure
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A block diagram representation of the system is shown in Figure 3-2, where the blocks represent 
constants or Laplace Transforms, will be constructed to realize the dynamic characteristics of 
components and the contribution of each in the overall performance of the system. The system 
transfer function is derived by block diagram reduction. 
  
The block Kep represents the gain in psi volt of the E/P converter for no flow conditions.  The 
input of the block is the voltage output of the PID controller Vo.  During high flow conditions, 
the internal resistance R of the E/P converter becomes a significant factor in the pressure output 
KVo of the E/P because it causes a pressure drop and affects the amount of pressure Pp available 
to drive the air cylinder piston.  The relationship between commanded E/P pressure and the 
piston pressure is shown below. 
 

Pp KepVo QtR= −   
where 
 Pp = piston pressure 
 Kep = voltage to pressure gain of E/P 
 Vo = PID output voltage 
 Qt  = total air flow into air cylinder 
 R   = internal resistance of E/P 
 
 Total flow Qt is caused largely by the sweeping volume of the air cylinder as it moves in 
the x direction.  This contribution to flow is designated as Qp and is expressed as  

Qp A
dx

dt
=  

where 
 A = area of piston 
 A secondary contribution to flow is the compression of the air in the air cylinder.  The 
compressed air stores energy and can be modeled as a capacitance.  The flow of the pneumatic 
capacitor is expressed by  

Qc C
dp

dt
=  

 Where C is the capacitance of the air cylinder for small changes in volume at cylinder mid-

stroke and 
dp

dt
 is a small change in pressure at cylinder mid-stroke.   

 
The total flow during a change in platform position is then:  

Qt A
dx

dt
C

dp

dt
= +    

The summing point of the three flows occurs at the third summer in the block diagram.  The 

output sum of this block is the variable Qc which is applied to the gain block 
1

C
 to produce the 

piston pressure Pp. 
 
The basis of the model is the force balance relationship between the force caused by the pressure 
Pp on the piston face with area A and the force caused by the combined weight of the load and P
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platform.  Any unbalance in the force balance relationship Fw = Fp will cause the platform to 
move up or down along the x direction.  The force balance is expressed as:  

Fp Fw m
dx

dt
− =

2

  

and is illustrated on the block diagram by fourth summing node were Fw and Fp are added 

resulting in an output m
dx

dt

2

. 

 

To model the position x output of the system, the expression for force m
dx

dt

2

 was divided by the 

gravity constant m and then passed through two integrators.  First, the force term was passed 

through a gain block 
1

m
 leaving the acceleration term 

dx

dt

2

.  This term was integrated once and 

used in the air-flow velocity feedback path through block A on the top of the diagram.  Then the 

velocity term 
dx

dt
 was integrated to produce the desired x output.  To supply the controller with 

information about the position x of the platform, a linear potentiometer was used.  This 
potentiometer was represented by the factor Kp and an input labeled Vos. 
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2 
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dt 
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+
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+
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+
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+
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Figure 3-2:  Block Diagram of Load Position Control System 
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Determination of System Transfer Function  
 
The block diagram of Figure 3-2 was used to derive a transfer function by block combination and 
simplification.  The first step in simplification was eliminate the Fw input by holding it constant 
and including its mass contribution into the model.  Any inputs can be ignored since they are not 
of concern when finding the transfer function.  The PID controller was set to unity gain during 
response testing so it may also be removed to simplify the model.  The resulting simplified 
model that will be used for analysis is shown below in Figure 3-3. 

 

- 

- 
Kep 

R 
1 

s 
1 A 

m 
1 

s 
1 

s 
1 

A 

1 
C 

X 

Kp 
Vf 

Vi + 
+ 

 
 
 

Figure 3-3:  Reduction Step 1, System Model Used for Derivation of System Transfer Function 
 
 
 

The second step in simplifying the block diagram was to combine adjacent blocks and move 
1

R
 

through the outer summer to eliminate it. 
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Figure 3-4:  Reduction Step 2 
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The third step was to find the equivalent gains of the inner loops then and combine them into a 
single block. 

s
1 X

Kp
Vf

AR

RCms + ms + A R

Kep
R 2 2

Vi

 
Figure 3-5:  Reduction Step 3 

 
The last step in simplification was to combine adjacent blocks resulting in a single block 
representing the transfer function of the system and a feedback block representing the linear 
potentiometer. 
 

3

AKep/RC X

Kp
Vf

2
s + (1/RC)s + (A /Cm)s

2

Vi

 
Figure 3-6:  Reduction Step 4 

 
Combining the above blocks and putting in transfer function form results in: 

 
Vi

Vf

AKepKp RCm

s
RC

s
A

Cm
s

=
+ 





+3 2
21

 

This transfer function will be used for root locus analysis of the system to find the maximum 
gain for instability and the frequency of the resulting oscillation. 
 
Determination of the Transfer Function Coefficients 
 
The physical constants of the system were determined by experimentation, measurement and 
inspection of the component data sheets.  Each component was modeled using standard units 
when finding the system transfer function.  To enhance understanding of the system, units were 
converted back to standard units for simulation and demonstration.  The components modeled 
were the E/P, air cylinder and load platform, and linear potentiometer. 
 
E/P Gain 
   
For the E/P, the transfer function was taken from response data.  The plot below shows the input 
vs. output with the output port of the E/P sealed. P
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The transfer function of the system was modeled for a load of 36.81 lb.  The air cylinder must 
generate an equal and opposite force to position the platform.  The air pressure amplified by the 
surface area of the piston results in the generated force.  With a surface area of 1.767 in2  the 
operating pressure must be 20.83 psi.  At this point on the graph, the voltage required to produce 
this pressure is approximately 7 volts DC.  Therefore the gain at this point is 20.83psi /7 V or  
approximately 3 psi/volt.  This value converted to standard units is 

Kep = 432 lb./ft./V 
 

E/P Pneumatic Resistance 
 
Using a first order approximation, another characteristic of the E/P was determined, its 
pneumatic resistance.  By observing how long it took to fill a known volume and estimating the 
capacitance of that volume the resistance of the E/P was found from the time constant.  The E/P 
output resistance was determined indirectly by finding a system’s time constant, when using the 
E/P to pressurize a tank of known volume.  An assumption was made that the system was first 
order.  In a first order system, the output will reach 63% of its final value in one time constant 
when subjected to a step input.  Using the data acquisition system, the system’s response was 
recorded.  It was used to extract the 63% of final value and the time constant.  Using the time 
constant value, and an estimate of the pneumatic capacitance of the volume of the tank, the E/P 
output resistance can be calculated. 
 
The E/P input was stepped from 7.0151 volts to 7.7870 volts, raising the pressure of the tank 
from 20.624 psi. to 23.828 psi.  This pressure range was selected because it is within the pressure 
operating range of the load platform control system during PID tuning.  Figure A-1 shows a plot 
of the tank pressure while the step input was applied.  From the data collected (Table 3-1), the 
start of the step was found at t = 28.5000 seconds and the time at which the output pressure 
settled to a steady state value was at t = 47.399s.  The point where the output equaled 63% of the 
change from the initial pressure to the final would be 

[ ]p psi= − × + =( . . ) . . .23 828 20 624 0 63 20 624 22 65  

inspection of the data table yields the closest 63% point of 22.636 psi at t= 33.2 seconds. 

Figure 3-7 
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Figure 3-8 

The time constant τ  can be determined by subtracting the time of the start of the E/P input step 
from the time where the pressure output is at 63%.  

 τ = − =33 2 28 5 47. . . s  
 
 
 
Pneumatic Capacitance of Test Tank 
 
For a constant-temperature pressure system (isothermal), the pneumatic capacitance can be 
determined by: [Ref.5 p. 91] 

C
V

n p
=  

where: 
V

n

p

=
=

=

average volume

polytropic constant

average absolute pressure

 

 
The polytropic constant n is assumed to be 1. 
 
The average absolute pressure is 

( ) ( )
p

psi psi
psia=

+ + +
=

20 624 14 1 23 828 14 1

2
36 3

. . . .
.  P
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or in standard units 

p
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ft
= ×


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
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= ×36 3
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2
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If the volume of the tank is 1296 cu. in., then the pneumatic capacitance is 

C
cu in

psia

cu in

psia
= =1296

36 3
357

.

.
.

. .
 

or in standard units 

C
ft

lbf

ft

ft
lbf

ft

=
×

×
= ×

−
−750 10

5 2 10
144 2 10

3 3

3
2

3
3

2.
.  

 
 
 
Pneumatic Resistance of the E/P 
 
The time constant of the first order tank system was expressed as τ = RC .  Solving this 
expression for resistance and using the values determined above for the time constant and 
pneumatic capacitance, the E/P resistance is 

R
C

s
cu in

psia

s
cu in

psia

= = = ×τ 47

357
13165 10 3.

.
. .

.
. .

  

or in standard units 

R
C

s

ft
lbf

ft

s

ft
lbf

ft

= =
×

= ×
−

τ 47

144 2 10

32 6 10
3

3

2

3
3

2

.

.

.  

 
Note:  The actual value for pneumatic resistance used in the model for simulation was slightly 
less than the value shown due to error during an initial calculation of the resistance.  The value 
actually used was  

R
C

s

ft
lbf

ft

= = ×τ
3144 103

3

2

.  

 

%
. .

.
.error = − × = −3144 32 6

32 6
100% 0 036%  

The percentage error is less than 1% and will not significantly affect the accuracy of the 
modeling and simulation.  
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TABLE 3-1:  Data Table for pressurization of 1296 cu in tank through E/P 
Time  (s) Pressure Transducer  (volts) Pressure Eng. Units  (psi) 

25 0.5205 20.488 
25.1 0.5205 20.488 

. . . 

. . . 

. . . 
28.4 0.5244 20.644 
28.5 0.5239 20.624  (Step Input) 

. . . 

. . . 

. . . 
32.3 0.5674 22.364 
32.4 0.5679 22.384 
32.5 0.5688 22.42 
32.6 0.5698 22.46 
32.7 0.5703 22.48 
32.8 0.5708 22.5 
32.9 0.5718 22.54 
33 0.5728 22.58 

33.1 0.5732 22.596 
33.2 0.5742 22.636 (pressure at 63% of final 

value) 
33.3 0.5752 22.676 
33.4 0.5757 22.696 

. . . 

. . . 

. . . 
45.9999 0.604 23.828 
46.0999 0.604 23.828 
46.1999 0.6035 23.808 
46.2999 0.6035 23.808 
46.3999 0.604 23.828 
46.4999 0.6035 23.808 
46.5999 0.604 23.828 
46.6999 0.604 23.828 
46.7999 0.604 23.828 
46.8999 0.604 23.828 
46.9999 0.604 23.828 
47.0999 0.604 23.828 
47.1999 0.604 23.828 
47.2999 0.604 23.828 
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Time  (s) Pressure Transducer  (volts) Pressure Eng. Units  (psi) 
47.3999 0.604 23.828 (Final Pressure) 
47.4999 0.604 23.828 
47.5999 0.604 23.828 
47.6999 0.604 23.828 
47.7999 0.604 23.828 

 
 
 
Air Cylinder Pneumatic Capacitance 
 
The capacitance of the air in the air cylinder at cylinder midpoint with a combined load and 
platform weight of 36.81 lb. was found using the following relationship: 

C
V

n p
=  

where: 
V

n

p

=
=

=

average volume

polytropic constant

average absolute pressure

 

This relationship is valid for a small change in volume and pressure, and constant temperature.  
The polytropic constant is assumed to be 1 in this isothermal process. 
 
For the air cylinder at midstroke: V =  3.07 x 10 ft3 3−  
 
polytropic constant:    n = 1 

average absolute pressure: p =
























=14.1 psi +
36.81 lbf

1.767in
 x 

in
1

12
ft

5.03x10
lbf

ft2

2

2

3
2

 

 
Then:    C = 610.3 x 10-9 ft.3 /lb./ft.2 

 

 

 
The area of the air cylinder piston for the 1.5 inch air cylinder was 

A = 12.27 x 10-3 ft.2 

The combined weight of the load and load platform, piston rod, and piston was 36.81 pounds.  
The mass associated with this force was 

m = 36.81 lb. / (32.2 ft/sec2) = 1.143 slugs 
The gain of the 8” linear potentiometer was calculated for a bias of 10 volts as 

Kp = 15 V/ft  
Substituting the constants into the transfer function of the system yields: 
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 =
+ +

3625

52 12 215 823 2s s s. .
 

or  ( )( )
3625

4 54 47 58s s s+ +. .
 

 
Root-Locus of Transfer Function 
 
The open loop transfer function was entered into MATLAB to plot the root-locus.  The root-
locus plot is a graphical representation of how system gain affects the location of the transfer 
function roots in a complex plane.  For the system to remain stable, the root-loci must remain in 
the left half plane. The gain K that causes the open loop root-locus to cross the imaginary axis 
will also be the closed loop system gain Pu that causes continuous oscillation.  The frequency of 
oscillation at the gain crossover pointω will be used to determine the ultimate period Tu.  Figure 
3-9 shows the root locus plot of the open loop transfer function.  
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Root-Locus Plot of Vi/Vf = K (3625) / [s^3 + 52.12s^2 + 215.82s]

 
 
 
From plot above and the pole-zero form of the open loop transfer function Vi /Vf  = 

( )( )
3625

4 54 47 58s s s+ +. .
 the poles originating at s = 0, s = -4.54 and s = -47.58 are identified.  There 

are no zeros.  As K is varied from 0 to infinity: the pole at s = -47.58 moves towards negative 
infinity on the real axis and will not cause system instability.  To improve observation of the 
roots around the imaginary axis, the plot was expanded in Figure 3-10. 

Figure 3-9 
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Figure 3-10 

The poles starting at s = 0 and s = -4.54 meet on the real axis near s = -2.4 where the pole 
originating at s = -4.54 moves along the negative imaginary axis and the pole originating at s = 0 
moves along the positive imaginary axis.  To determine the values of K and ω at the gain 
crossover point, the root-locus was calculated in MATLAB for a range of K near the previously 
known crossover point of 1.95 of the actual system.  Through trial runs, the crossover point for 
the theoretical system was found at K = 3.1000 with anω of 14.6841 rad/s.  The data tables as 
copied from MATLAB are shown following. 
 
Table 3-2:  Data Listing From MATLAB for Gain K of Root-Locus Near Gain Crossover Point 
 
» K = [2:0.1:3.5] 
 
K= 
 
  Columns 1 through 7  
 
    2.0000    2.1000    2.2000    2.3000    2.4000    2.5000    2.6000 
 
  Columns 8 through 14  
 
    2.7000    2.8000    2.9000    3.0000    3.1000    3.2000    3.3000 
 
  Columns 15 through 16  
 
    3.4000    3.5000 

P
age 6.30.24



 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition     
Copyright 2001, American Society for Engineering Education 

 

 
 

 Table 3-2:   Data Listing From MATLAB for Root-Locus Near Gain Crossover Point 
 
» r = rlocus(num,den,K) 
 
r = 
1. -50.6841            -0.7179 +11.9385i   -0.7179 -11.9385i 
2. -50.8208            -0.6496 +12.2217i   -0.6496 -12.2217i 
3. -50.9560            -0.5820 +12.4968i   -0.5820 -12.4968i 
4. -51.0899            -0.5150 +12.7643i   -0.5150 -12.7643i 
5. -51.2225            -0.4488 +13.0248i   -0.4488 -13.0248i 
6. -51.3538            -0.3831 +13.2787i   -0.3831 -13.2787i 
7. -51.4838            -0.3181 +13.5265i   -0.3181 -13.5265i 
8. -51.6126            -0.2537 +13.7684i   -0.2537 -13.7684i 
9. -51.7403            -0.1899 +14.0049i   -0.1899 -14.0049i 
10. -51.8667            -0.1266 +14.2361i   -0.1266 -14.2361i 
11. -51.9920            -0.0640 +14.4625i   -0.0640 -14.4625i 
12. -52.1162            -0.0019 +14.6841i   -0.0019 -14.6841i 
13. -52.2394             0.0597 +14.9014i     0.0597 -14.9014i 
14. -52.3614             0.1207 +15.1144i     0.1207 -15.1144i 
15. -52.4824             0.1812 +15.3234i     0.1812 -15.3234i 
16. -52.6024             0.2412 +15.5286i     0.2412 -15.5286i 
 
The root-locus that crosses the imaginary axis was taken as line 12 where s = -0.0019 ± 14.6841i    
The frequency is in radians/second, converting to cycles per second yields 

f = = =ω
π π2

14.681 rad / sec

2
2.337 Hz  

and 

T = =1

2.337 Hz
0.428 seconds  

 
To see what K was at this point, inspection of the data table for K at column 12 shows a gain 
value of 3.1000. 
 
Load Platform Position Control System Model 
 
The system model was entered into MATLAB’s toolbox SIMULINK to verify the K = 3.1 value 
for constant oscillation and the frequency of oscillation ω = 14.681 rad/s found from root-locus 
analysis.  Figure 3-11 is the Simulink block diagram representation of the load platform position 
control system shown in Figure 3-2.  The closed loop testing procedure for the simulated system 
used the same test parameters as those in the actual system.  The operating setpoint was 7 volts, 
platform load was 36.81 lb. and the simulation time was six seconds. 
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Figure 3-11:  Closed Loop SIMULINK System Model 

 
First, to show that the crossover gain determined in the root locus is actually a value that has 
magnitude that is just enough to place the system at the edge of instability, a K value slightly less 
than the crossover gain will be used to show that the system has a damped oscillation that will 
not oscillate continuously.  Figure 3-12 shows the system output plotted by the graph block in 
Simulink.  
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Figure 3-12 
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Next, the system simulation was run with a K value at the ultimate gain magnitude K= 3.100.  
The system oscillated continuously as shown in Figure 3-13. 
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Figure 3-13 

 
To find the ultimate period Tu, the total number of cycles of Figure 3-13 was divided into the six 
second simulation time.   
 
 
The total number of cycles shown in the graph is 14.  The period for one cycle was then 
calculated as 

Tu = =6 seconds

14 cycles
0.429 seconds  

and 

F
Tu

= =1
2.333 Hz  

 
 
 

Table 3-4:    Determination of Pu and Tu by Root-Locus and Closed Loop Simulation 
 Ultimate Gain  Pu Ultimate Period  Tu 

(seconds) 
Frequency  F   

(Hz) 
Root-Locus Method 

 
3.100 0.428 2.337 

Closed Loop 
Simulation 

3.100 0.429 2.333 

 
The table shows that the results from the root-locus and closed loop simulation are practically 
identical.  The values Pu and Tu from the closed loop simulation will be used to calculate the P
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PID controller constants using the modified form of the Ziegler-Nichols Tuning rules used in the 
LABTECH NOTEBOOK Software. 
 
 
  

 Table 3-5:  Ziegler-Nichols Tuning Rule Based on  PU  and TU  - LABTECH 
NOTEBOOK Form 
Type of 

Controlle
r 

Proportional Gain 
P 

Integral 
Gain 

I 

Derivative 
Gain 

D 
P     0 5. PU  0  0  

 
PI 0 45. PU  

0 54.
P

T
U

U







  0  

 

PID 0 6. PU  
12.

P

T
U

U







  ( )0 075. P TU U  

 
With the values of TU  = 0.429 and PU  = 3.100 obtained, the controller constants were calculated 
in the LABTECH format of the Ziegler - Nichols Tuning Rules for quarter cycle decay response:       
   

  P = 0.6 PU         I = 1.2(PU   /TU )        D = 0.075(PU )(TU )                
 
The controller constants were:                        

P = (0.6)(3.100) =1.860      I = 1.2(3.100/0.428 ) = 8.692      
D =.075(3.100)(0.428) =.0995 

 
Summary 
 
The Load Platform Position Control System was modeled using Laplace Transforms and block 
diagrams.  The transfer function of the system was derived by block diagram reduction and then 
used in root-locus analysis to find the of transfer function gain K which caused the root-locus to 
cross the imaginary axis.  This crossover point, K is equal to the ultimate gain Pu for continuous 
oscillation.  The period of this oscillation was found using the value of ω at the gain crossover 
point.  The values of Pu and Tu were then used in the Ziegler-Nichols tuning rules to obtain the 
PID controller constants. 
 
A closed loop simulation using SIMULINK verified that the value of Pu obtained in the root-
locus method was of magnitude such that it just caused continuous oscillation of the closed loop 
system with the period Tu. 
 
 
IV. Conclusion 
 
The paper presents a feedback control system for use in an Engineering Technology Laboratory 
Course.  The feedback control system was to control the position of a load platform.  The design 
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task included finding the appropriate PID controller constants for a software based PID 
controller.  Two approaches were used to find the PID controller constants. 
 

1. The system was tested with a load of 30 lb. for the closed loop gain Pu that caused 
continuous oscillation and the period Tu of that oscillation.  Pu and Tu were then used 
in the Ziegler-Nichols tuning rules to find the PID constants. 

2. A model was generated for the system and the resulting transfer function analyzed 
using root-locus analysis.  Pu and Tu were obtained from the root-locus plot and then 
verified by computer simulation of the closed-loop system.  Pu and Tu were then 
again used in the Ziegler-Nichols Tuning Rules to find the PID constants. 

 
The gain for oscillation Pu in the actual system was 60% lower than in the theoretical system and 
the period for oscillation Tu in the actual system was 30% higher than the theoretical system.  
These differences in Pu and Tu reduced the magnitude of the PID constants in the actual system. 
When the theoretical values were used in the actual system violent oscillation of the load 
platform resulted.  These results suggest that a refinement of the system model is necessary.  The 
parameters of the actual and theoretical system are compared in Table 4-1. 
 
 Pu Tu P I D 
Actual System 1.95 0.600 1.170 3.900 0.088 
Theoretical System 3.10 0.428 1.860 8.692 0.0995 

Table 4-1:  Comparison of Actual and Theoretical System Parameters 
 

To compare the performance of the actual and theoretical system, the closed loop response to 5 
lb. and 10 lb. load disturbances was plotted in Figure 4-2.  The data for the actual system was 
obtained by storing data from a channel that scaled the output voltage of the linear potentiometer 
to inches.  To duplicate the test in SIMULINK, the system modeled in Chapter 3 was modified to 
include the varying mass of the platform.  Step inputs were programmed according to the loading 
profile intervals observed in the time column of the data acquisition file taken while operating 
the actual system.  The modified SIMULINK system model is shown in Figure 4-1.  
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Figure 4-1: SIMULINK Representation of the Multiple-Loads Profile 
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Figure 4-2: System responses:  a) actual system, b) simulation, c) actual and simulation   
       superimposed 
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Simulation data was generated by storing the output of the system of Figure 4-1 into a MATLAB 
workspace matrix.  The data from the actual system was imported into MATLAB, and then 
stored in time and position matrices.  The simulation and actual system response is shown in 
Figure 4.2.  The lower overshoot in the plot of the simulation indicates that this system has 
higher damping than the actual system. This agrees with the fact that the root-locus of the 
simulated system showed a higher allowable gain K before the system went into sustained 
oscillation. 
 
The difference in the plots of the actual system and model is caused by stiction and the 
estimation of the capacitance of the air in the air cylinder.  The stiction of the air cylinder was 
ignored in the model but is quite evident by the “jaggedness” seen in the plot of the actual 
system.  The more highly damped response of the model is due to the fact that the capacitance of 
the air in the air cylinder was theoretically higher than it should have been because it was 
modeled for a load of 36.81 lb.  This gave the simulated system an unrealistically high time 
constant for the loads of 5 lb. and 10 lb. 
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