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Abstract 

In this study, the sound-structure interaction problem in a coupled structural-acoustic 
system has been investigated. The novelty of this investigation is embedded in using of Finite 
Element Method to calculate sound pressure level. The governing differential equation for the 
interaction of the acoustic cavity with the flexible wall (plate) is calculated. The modal analysis 
of such a problem is possible, an analysis in which the decoupled equations of motion for the 
cavity and the flexible wall can be obtained separately. In order to accomplish this task, the 
coupled structural-acoustic system has been decomposed to an acoustic component, a cavity with 
a rigid wall, and a structural component, a flexible wall (plate). The cavity modes (eigenvalues 
and eigenvectors) of the cavity with the rigid wall boundary condition and structural modes of 
the simply supported flexible plate in a vacuum are obtained by using the finite element method. 
The coupled structural-acoustic equation for the pressure inside the cavity is obtained in terms of 
the eigenmodes of the cavity and the flexible wall. The coupling method has been successfully 
implemented into two classical existing problems. 

 
1. Introduction 

Interaction between the internal sound pressure field and the flexible wall of an enclosure 
has been a very popular subject for scientists and researchers. The results of such interaction will 
induce an acoustic pressure and noise field that poses a major engineering design challenge. 
Therefore, a good understanding of the mechanisms of noise transmission through an elastic 
plate allows us to use more effective techniques to control noise. 

Consider a fluid in a cavity which has a surface such that part of the surface is flexible 
(Fig. 1). The flexible wall is excited by external pressure in which interaction between the 
flexible wall and the fluid in the cavity has an impact on the acoustic pressure within the cavity. 
Due to vibration of the flexible wall, an acoustic pressure will be generated in the coupled 
structural-acoustic system. 

Various approaches have been developed by different researchers to calculate the interior 
pressure in a coupled structural-acoustic system1-7.  In this study, a modal coupling method is 
adapted to determine the acoustic pressure. In this method, the coupled structural-acoustic 
system has been decomposed to the acoustic component, a cavity with a rigid wall, and a 
structural component, a flexible wall (plate) with simply supported boundary condition. The 
acoustical modes are obtained by mathematically combining the cavity modes and the structural 
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modes along with coupling coefficients to form a non-symmetric eigenvalue problem, which 
yields coupled acoustical modes. Finally, the interior pressure is obtained in terms of these 
coupled acoustical modes. 

 

2. Wave Equation in Acoustic Component 

The equation of the velocity potential and the associated boundary conditions can be 
given as 
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The solution of the differential equation (Eq. (2)) subjected to the boundary condition (Eq. (3)) 
can be replaced by an equivalent variational principle as 
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The finite element method can be used to obtain an approximate solution of this variational 
principle. Then, the finite element method yields the matrix equation as8 
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3. Vibration of the Structural Component 

The finite element matrix equation of the structural component (plate) in free vibration 
can be represented as follows: 
 ( ) 0~~ =- msms MK yl  (6) 

where the stiffness matrix sK  and the mass matrix sM  are defined as 
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For the sake of convenience, y is usually normalized with respect to the mass matrix so that 

IM s
T =yy  

4. Coupling Coefficient 

The coupling coefficient between the nth cavity rigid wall mode and the m~ th plate mode is 
given by1 
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In general, if the value of the coupling coefficient in coupled structural-acoustic 
interaction is very small or equal to zero, the coupling is described as weak coupling. In this 
case, the problem would be greatly simplified by neglecting these non-significant modes. 
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Equation (8) is used to identify the participation of the component modes in coupling as 
well as participated eigenvalues of the structure ml . Therefore, non-participated eigenvalues are 
those not to be satisfied by Eq. (8). nmL  is the coupling coefficient between the nth cavity mode 
and the mth participated in vacuo flexible plate mode in coupling. 

   
5. Acoustic Pressure  

The equation of the coupled structural-acoustic interaction problem in matrix form can be 
written in terms of amplitudes C related to N cavity modes and amplitudes S related to M 
structure modes as1,9 

  ( ) ( ) ( )ttGtI rxx =+&  (9) 

where the coefficient matrices I and G are defined as P
age 7.44.3
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The state vector and its corresponding components is thoroughly defined in reference9. 
Furthermore, E

mQ  is given as 
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where I is a positive definite, real diagonal matrix of order 2(N+M)´2(N+M), G is a skew 
symmetric real matrix of order 2(N+M)´2(N+M), and x and r are 2(N+M)´1 vectors. 

In Eq. (9), x vector can be calculated by the expansion theory and Laplace transform. 
Solution of Eq. (9) yields the nodal acoustic pressure vector within the coupled structural-
acoustic system. 
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Where mx ++MN2  and nx  indicate the (2N+M+m)th and (n)th element of vector x, respectively. 

6. Numerical Examples 

The coupling method developed has been applied to two model examples. The specific 
details of the cavity and the flexible plate are given below. Guy10 and Bokil9 found the 
experimental and analytical results in works, respectively. 

 
Model I 

Model I consisted of a rectangular cube cavity with the following dimensions: length 
along the x-axis, width along the y axis and the depth along the z axis are 30.48 cm, 15.24 cm, 
and 15.24 cm, respectively. Also, there is a cavity made of 2.54-cm thick plywood and a 5.08-cm 
thick layer of concrete surrounding the outside walls. A simply supported aluminum panel was 
mounted on one of the faces. The dimensions and the material properties of the plate are given as 
follows: length along the x axis, a is equal to 30.48 cm, width along the y axis, b is equal to 
15.24 cm, thickness, h is equal to 1.6256 mm, density, r is equal to 2,400 Kg/m3, modulus of 
elasticity, E is equal to 7.0´1010 N/m2, and Poisson’s ratio, n is equal to 0.33. 

 
Model II 

Mode II consisted of a square cube cavity with the following dimensions: length along 
the x-axis, width along the y-axis, and depth along the z-axis are 20 cm, respectively. The cavity 
is made of a 1 cm thick steel box with a simply supported brass panel on one wall. The 
dimensions and material properties of the plate are given as follows: length along the x axis, a is 
equal to 20 cm, width along the y axis, b is equal to 20 cm, thickness, h is equal to 0.9144 mm, 
density, r is equal to 8,500 Kg/m3, modulus of elasticity, E is equal to 10.4´1010N/m2, Poisson’s 
ratio, and n is equal to 0.37. The back wall of the box, opposite the brass panel, was a 2.54-cm 
thick steel piston. As a general form, these two models can be represented by a rectangular cavity 
as shown in Fig. 2. 

In the calculation, the density of the air inside the cavity is assumed to be 1.2 kg/m3, the 
nodal external excitation pressure at the center of the back wall is assumed to be 10 N/m2, and 
the equilibrium acoustic velocity within the cavity is assumed to be 343 m/sec. The values of the 
N cavity modes and the M plate modes are assumed to be four and nine, respectively. These 
values are sufficient to yield results within the required accuracy range. The modal vectors 
(eigenvectors) and the natural frequency (eigenvalues) of the flexible wall and acoustic wave are 
calculated by finite element codes. In order to discretize finite element models, linear hexahedral 
elements for the rigid walled cavity and Kirchhoff rectangular elements for the simply supported 
plate are being used. In this code, the volume of the cavity is divided to 256 elements, 405 nodes 
and 405 degrees of freedom and the area of the plate is divided to 64 elements, 81 nodes and 175 
degrees of freedom.  

The coupling coefficient between the nth cavity rigid wall mode and the mth in-vacuo 
plate mode is evaluated numerically by Eq. (8). In this study, since the values of N and M are P
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assumed to be four and nine, then only the first nine participated eigenvalues of the plate would 
be selected in coupling. The participated eigenvalues of the structure are listed in Tables 1 and 2 
for Model I and Model II, respectively. Also, the coupled natural frequencies of a coupled 
structural-acoustic system have been listed in Table 3 for Model I and Model II, to compare with 
the experimental ones. It can be noted that the numerically calculated coupled natural 
frequencies are quite close to the experimental ones. 

A computer program has been written to numerically calculate the transmission loss and 
the sound pressure level. The flowchart of the computer program is shown in Fig. 3. The nodal 
acoustic pressure at the center of the back wall was calculated by Eq. (10). The transmission loss 
expressed in decibel was, in turn, calculated as the ratio of the rms nodal external excitation 
pressure to the rms nodal acoustic pressure at the center of the back wall. The numerical data 
obtained by the finite element code and the experimental data of the transmission loss are plotted 
as a function of frequency of the external excitation pressure for Model I and Model II in Figs. 4 
and 5. The comparison of the numerically calculated transmission loss with the experimental  
values shows generally good agreement. 

 

7.  Conclusion 

The development of technology and the increasing application of computers in industries 
require our education system to provide students with superior knowledge in computational 
methods. Today, individuals in the field utilize computational methods such as finite element 
analysis to analyze complex problems. In this study, finite element models have been used to 
predict eigenvalues and eigenvectors of a rigid walled cavity and simply supported plate. The 
proposed method can be applied to any complex structure acoustic interaction problem. A 
problem of this kind can be assigned as a project in an applied acoustics course. The problem can 
be decomposed to a structure and a cavity in which a student-developed finite element code or 
any commercially available codes, such as NASTRAN 11 and COMET12, can be used to 
determine eigenmodes of the structure and cavity. The acoustic pressure can be, in turn, 
calculated in terms of eigenmodes of cavity and structure.  
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Nomenclature 

FA  flexible wall (plate) area 

RA  rigid wall area 

sB  strain displacement matrix of the structural component (plate) 

0C  acoustic velocity within the cavity 
 D material matrix of the structural component (plate) 

nF  eigenfunction of the acoustic component (cavity) 
 h thickness of the plate 

sK  stiffness matrix of the structural component (plate) 

aK  stiffness matrix of the acoustic component 

nmL  coupling coefficient 

sM  mass matrix of the structural component (plate) 

aM  mass matrix of the acoustic component 
Na interpolation matrix of the acoustic component 

sN  interpolation matrix of the structural component 
 nt Newton 

cp  nodal acoustic pressure vector within the cavity 
Ep  nodal external excitation pressure vector 

  t time 
 V volume of the acoustic component (cavity) 
 w elastic displacement of the flexible wall (plate) 
 x extended generalized coordinates vector 
 
Greek Symbols 
L n eigenvalue of the acoustic component (cavity) 

m~l  eigenvalue of the plate 

or  acoustic (air) density 
r  density of the structural component (plate) 
f n                eigenvector of the acoustic component (cavity)  

m~y  eigenvector of the structural component (plate) 
Æ  velocity potential within the cavity
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Table 1  Participated Eigenvalues of Plate and Cavity in Coupling (Model I)  
 

Eigenvalues of rectangular plate Eigenvalues of cavity 

Eigenmode number Eigenvalue (rad/sec) Eigenmode number Eigenvalue (rad/sec) 

1 1393.76 1 7041.3 

3 3639.25 2 7041.3 

8 8237.18 3 9891.2 

10 10428.0 4 13985.2 

14 11923.5   

17 15360.4   

18 15620.3   

25 20966.5   

27 22078.6   
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Table 2  Participated Eigenvalues of Plate and Cavity in Coupling (Model II) 

Eigenvalues of square plate Eigenvalues of cavity 

Eigenmode number Eigenvalue (rad/sec) Eigenmode number Eigenvalue (rad/sec) 

1 481.35 1 5345.9 

5 2417.10 2 10693.2 

6 2417.10 3 10693.2 

11 4136.44 4 10693.2 

16 6347.57   

17 6347.57   

21 7723.24   

22 7723.24   

31 10826.2   

Table 3 Natural Frequencies of Coupled Structural-Acoustic Systems 

Coupled natural frequency of Model I (HZ) Coupled natural frequency of Model II (HZ) 

Numerical value Experimental value  Numerical value Experimental value  

229.0 234.4 85 91 

577.8 588.5 384 397 

1126.6 1126.6 658 730 

1311.1 1316.8 859 864 

1593.3 1594.1 1010 1034 

1660.5 1680.5 1715 1729 
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Figure 1  (a) Structural-Acoustic System (b) Acoustic Component: Cavity with Rigid Wall 

(c) Structural Component: Flexible Wall 
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Figure 2  Rectangular Cavity with a Flexible Plate on One Face 
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Figure 3. Flowchart of the Computer Program to Analyze the 

Coupled Structural-Acoustic System 
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Figure 4  Transmission Loss in Model I 
________ Numerical Method 
oo Experiment Data (Guy) 
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Figure 5  Transmission Loss in Model II 
________ Numerical Method 
oo Experiment Data (Guy) 
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