A Fractal-based Decision Engine for Teaching & Learning

David Kokorowski, PhD VP Product Management Pearson

The world's leading learning company

Measurable impact on improving lives

through learning

PEARSON

The Two Sigma Problem

PEARSON

Close

MasteringEngineering®

Find an expression for v_0 , the initial speed of the fired object.

Feedback

You set the initial energy of the object equal to the final energy of the object and pendulum. The object collides inelastically with the pendulum, causing energy to be lost in the process. Therefore these energies are not equal.

Answer-Specific Feedback

MasteringEngineering®

Hint 1. How to approach the problem	Open
Hint 2. Determine which physical laws and principles apply	Open
Which of the following physical laws or principles can best be used to analyze collision between the object and the pendulum bob? Which can best be used to the resulting swing?	the analyze
Newton's first law	
Newton's second law	
Newton's third law Try Again	
Conservation of mechanical energy	
Conservation of momentum	
submit my answers show answer review part	
Feedback	ose
Mechanical energy is conserved in elastic collisions, but there is another conservation law that applies to any collision.	
Hint 3. Describe the collision	Open
Hint 4. Describe the swing	Open

Socratic Hints

MasteringEngineering®

Auto-scored Answertypes

PEARSON

ALWAYS LEARNING

MasteringEngineering[®]

ANSWER: height = $\frac{H}{4}$								
Answer St	tats:	Students	% Correct	% Unfinished	% Req'd Solution	Wrong/student	Hints/student	
Overall		7046	94.7%	2.8%	2.4%	0.8	0.6	
MPDEMOG	RADES	25	96%	4%	0%	0.8	0.2	
Wrong Ap								
Wrong An	swers iu		UNADE 5					
% Wrong	Answer	Resp	Response					
10%	$\frac{k\left(\left(\frac{x_0}{2}\right)}{2mg}\right)$	$\binom{2}{2}$ The	The correct answer does not depend on the variables: x_0, k, m					
10%	0.5H	Grav	Gravitational potential energy varies linearly with height, but the spring's potential energy varies quadratically with the amount of compression or extension.					
5%	$\frac{.125k}{mg}$	$(x_0)^2$ The	The correct answer does not depend on the variables and functions: x_0, k(), m					
5%	$\frac{4H}{g}$	Your	Your answer is off by a multiplicative factor.					

Diagnostic Analytics

A Simple Model of Student Behavior

Net Score = # steps to the right – # steps to the left

Distinguishing Response Patterns

Fractal Dimension = 1.94

Fractal Dimension = 1.60

Distinguishing Response Patterns

A student with fractal dimension 1.32

ALWAYS LEARNING

A student with fractal dimension 1.81

A student with fractal dimension 1.60

A Tale of Two Students

PEARSON

The Struggling Student can be Identifi

Short runs of smoothness followed by short runs of irregularity.

Long runs of smoothness followed by long runs of irregularity, then a tipping point (onset).

ALWAYS LEARNING

Towards Predictive Analytics

Spring 2013 Pilot – 1300 students

Low	Medium	High
Alerts	Alerts	Alerts
88%	77%	73%
A's and B's	B's & C's	C's & D's
<2%	<10%	~40%
D+ or	D+ or	D+ or
lower	lower	lower

Alerts identify previously invisible at-risk students

Final Grades by Early Alert, GEG = (66%-95%)

Despite high homework scores (86-95%), students that were identified as high alert, most often got a final course grade of C.

→Algorithm identifies what was a previously invisible population of at-risk students.

Fall 2013 Pilot - 1500 students, 8 schoo

73% of instructors agreed alerts were **accurate**

Instructors **intervened** with students whose grades were average, but who had high alert levels — expanding office hours & reviews; adding Adaptive Follow-up assignments

Students reported being **motivated** by the EA notification to attend office hours and reviews

A Fractal Based Decision Engine for Int

Patent Awarded: January 2014

Inventors: Dr. William Galen Dr. Rasil Warnakulasooriya

Towards a Two Sigma Solution

ALWAYS LEARNING

Next Steps [Or just skip to the next slide...]

NEED THIS SLIDE, OR SKIP???

The stands which a stand it is a stand of the stand of th

AKINTING

Building the next generation

of systems, products, and services

NEED THIS SLIDE, OR SKIP???

to many wat it is the child statement with it is the child in state to the child statement estimate where the statement estimates

