
A Genetic Algorithm for Scheduling

Jack Ryder

jryder@kean.edu

Mathematics and Computer Science

Kean University

1000 Morris Ave.

Union, New Jersey, 07083

Abstract: Genetic algorithms use concepts from evolutionary biology as a technique for solving

problems. They have successfully been used on a large number of scientific and engineering

problems such as: optimization, machine learning, adaptive systems behavior and complexity.

The genetic algorithm evolves over time a population of potential solutions by randomly selecting,

based on fitness, solutions to reproduce a population of next generation solutions using crossover

and mutation of solution parameters. This paper presents the genetic algorithm, necessary

terminology, operations for selection, crossover, mutation, fitness, and gives an example in the

area of scheduling.

Keywords: Genetic Algorithms, Scheduling, Engineering Computer Education

1. Introduction:

The genetic algorithm is a problem solving technique that uses the metaphor of

evolutionary biology in its approach. A population of potential solutions are

generated and tested for their ability to solve the problem. If one of the solutions

solves the problem the process is complete. If not, a new population of solutions

is generated using parts of the better performing solutions from the previous

population, and the process of evolving a solution continues.

John Holland [1] developed genetic algorithms as an abstraction of biological

evolution and provided the mathematical framework for adaptation of genetic

algorithms. Many problems involve searching through a large number of

possibilities for a solution. Other computational problems require programs to be

adaptive. Still others require new or novel ideas in their solutions. Genetic

algorithms are well suited to these types of problems. They have successfully

been used for problem solving in such areas as machine learning, robotics,

adaptive systems and optimization [2] [3].

2. Genetic Algorithm and Terminology:

Species (solutions) evolve over time through variation of genetic material by

mutation and recombination. Individuals with better genetic material, based on

environmental considerations, are more likely to survive into the next generation.

The notions of genetic material, exchange of genetic material and survival of the

fittest are fundamental to evolution and the development of genetic algorithms.

From biology each cell in an individual organism contains identical chromosomes. The

chromosomes consist of genes (strings of DNA) where each gene can be thought of as encoding

one trait of an organism. Each species genetic material is held by the collection of individuals in

that species. Genetic algorithms use a chromosome as a potential solution to a problem. Each

gene in the chromosome can be thought of as a trait or parameter that will help in solving the

problem. The problem space is usually multidimensional, so each gene represents one

dimension of the solution. The chromosome can be thought of as an array of traits. Collectively,

all solutions (chromosomes) are called the population. The most common way to encode traits

as genes in chromosomes is to use a binary string where each bit represents some trait of the

solution.

In sexual reproduction each parent contributes some genes from their chromosomes to spawn a

new offspring. Occasionally, one or more of the genes of the offspring may mutate and be

different from their parents. Genetic algorithms use the term genetic operators for this exchange

and change of genetic material. The two most commonly used genetic operators are

recombination (sometimes called crossover) and mutation. In single point crossover, two parents

are selected, a point (location) in the chromosome is randomly selected and two offspring are

produced as follows: one offspring consists of chromosomes from the first parent up to the

crossover point and the balance of the genes are taken from the second parent; and the second

offspring is made up from the unused genes of the first and second parent. Multipoint crossover

is also possible. The mutation operator involves toggling one or more of the bits in the

chromosome when using bit strings. The user defines the probability of mutation (P(m)) and

crossover (P(c)). P(m) is usually set quite low. It provides a means of introducing new genetic

information into the gene pool and prevents the algorithm from getting stuck in local minimums.

Note, P(m)=1 degrades the genetic algorithm into a random search. P(c) is usually set much

higher since we do want to simulate evolution from generation to generation by producing new

offspring in search of a solution. P(c) regulates what percentage of the new population will be

created by crossover and the balance will come from the existing population. Note, it is a good

idea to carry over some of the most fit (better) solutions from generation to generation.

Survival of the fittest is accomplished in the genetic algorithm by selecting two parents

according to a fitness function for crossover (reproduction). The idea is that better solutions can

be found in offspring by combining highly fit parental chromosomes from the current population.

Fitness for each chromosome is a function of the underlying genes (dimensions of the problem).

It measures how fit the chromosome is with regard to being a solution to the problem. The

fitness function is domain dependent and defined by the designer of the genetic algorithm. One

common method of selecting chromosomes for crossover is proportional fitness selection where

the probability of being selected is proportional to the chromosomes fitness with regard to the

whole populations fitness (like a roulette wheel). Another common method is selection based on

ranked fitness. In either method, the higher the fitness the more likely the chromosome will be

selected for reproduction.

The genetic algorithm creates a population of N solutions and then iteratively – evaluates the

fitness of each solution, generates a new population of size N using crossover and mutation with

P(c) and P(m) – until a solution is found or termination condition is met (possibly the number of

iterations) and is given below.

 Initialize a population of N chromosomes (usually done randomly)

 Repeat

 Evaluate all chromosomes using fitness function

 Clear new population

 While (new population is not full)

 Select 2 chromosomes from population

 Using P(c) generate two new offspring or

 Use two selected from population

 Using P(m) mutate offspring

 Insert offspring into new population

 End while

 Update population with new population

 Until (termination condition is satisfied)

3. Course Scheduling Problem:

Each semester universities and colleges need to schedule courses for their next semester. There

are many constraints in scheduling courses (or scheduling tasks in general), such as faculty

availability and preferences, room allocation, time considerations and leveling courses over all

days and periods. The use of a genetic algorithm to solve course-scheduling problems was

motivated by Junginger [4]. A simplistic view of scheduling is to match each task in a task list

(courses) with a specific time (period) such that there are no schedule conflicts (teaching, room

assignments, …). The genetic algorithm that I propose only takes into consideration teaching

assignment conflicts – no teacher can teach two courses during the same time period.

The course scheduling problem is then stated as follows – given:

 C a set of courses

 P a set of periods (times)

 T a set of teachers

 A: T-> POW(C) a course assignment function for the set

 of teachers to the power set of C,

find an assignment from C->P (courses to periods) under the constraint that A(t) cannot teach

two courses during the same period over all teachers.

4. Scheduling Genetic Algorithm:

The genetic algorithm as described in section 2 was used. Problem encoding, fitness evaluation,

selection, crossover and mutation details are given below. User defined parameters to the

scheduling genetic algorithm are:

 P(c) probability of crossover

 P(m) probability of mutation

 N number of chromosomes (solutions) for the GA to process

 C number of courses

 P number of periods (schedule times)

 T number of teachers

 ITS maximum number of iterations to evolve the population

 without finding a solution

Each teacher is required to teach four courses. For simplicity it is assumed that the first teacher

teaches courses 1-4, the second teacher the next 4 and so on.

4.1 Problem Encoding:

A schedule solution (chromosome) can be represented with a Boolean matrix. Rows represent

periods and the columns represent the courses being offered for the semester being scheduled.

An entry of 1 in the solution matrix represents a course being taught in the given period and a 0

not being taught. Note, each column in the matrix representation will have exactly one 1, i.e.)

the course must be scheduled for exactly one period.

As an example let C={1,2,3,4,5,6,7,8}, P={1,2,3,4,5}, T={1,2}, A(1)={1,2,3,4} and

A(2)={5,6,7,8}. Here we have 8 courses, 5 periods, and 2 teachers with the first teacher teaching

courses 1 through 4 and the second teaching 5 through 8. One possible solution is given below

in Table 1. The solution is not unique, but it is optimal in the sense that there are no conflicts (a

teacher teaching more that one course in one time period).

4.2 Fitness Evaluation and Selection:

Proportional fitness is calculated and used for selection in the scheduling genetic algorithm. The

fitness of each possible solution (chromosome) is inversely proportional to the amount of

conflict within the solution. A better solution will have less conflict. The fitness is calculated as

follows:

1. Calculate the teaching assignment (course) conflict of each possible solution in the

population by counting the number of periods with more than one course scheduled

for each teachers

2. Total the conflicts for all chromosomes (solutions) in the population

3. The independent fitness of each solution is the reciprocal of each solutions conflict

4. Rescale each solution fitness (3) proportionately with respect to the total population

fitness (2)

An example is given below.

 Solution Conflicts Fitness Proportional Fitness

 1 8 1/8 (1/8)/.801 = .156

 2 5 1/5 (1/5)/.801 = .250

 3 3 1/3 (1/3)/.801 = .416

 4 7 1/7 (1/7)/.801 = .178

 totals 23 .801 1.000

Selection of chromosomes for crossover was accomplished by using the proportional fitness of

each solution as the probability for being selected for mating. Note, chromosome 3 has the

highest probability of being selected and the fewest number of teaching assignment conflicts.

4.3 Crossover and Mutation:

Single point crossover was used in the scheduling genetic algorithm. This operation produces

two offspring, which are added to the new population. The crossover point is a randomly

selected column. Course schedules after the crossover column are exchanged by the two

selected chromosomes to form two new offspring. The example below illustrates crossover at

(after) course 5.

 One solution Another solution

Period/course 1 2 3 4 5* 6 7 8 1 2 3 4 5* 6 7 8

1 0 0 0 0 0* 1 0 0 0 0 0 0 0* 0 0 0

2 0 0 0 0 1* 0 0 1 0 0 0 1 0* 0 0 0

3 1 0 0 1 0* 0 0 0 1 0 1 0 1* 0 1 0

4 0 1 1 0 0* 0 1 0 0 0 0 0 0* 1 0 1

5 0 0 0 0 0* 0 0 0 0 1 0 0 0* 0 0 0

 One new offspring solution Another new offspring solution

Period/course 1 2 3 4 5* 6 7 8 1 2 3 4 5* 6 7 8

1 0 0 0 0 0* 0 0 0 0 0 0 0 0* 1 0 0

2 0 0 0 0 1* 0 0 0 0 0 0 1 0* 0 0 1

3 1 0 0 1 0* 0 1 0 1 0 1 0 1* 0 0 0

4 0 1 1 0 0* 1 0 1 0 0 0 0 0* 0 1 0

5 0 0 0 0 0* 0 0 0 0 1 0 0 0* 0 0 0

Both original solutions have a conflict of 3 before crossover and conflicts of 3 and 2,

respectively, after crossover. The conflicts are underlined. For example the first new offspring

has 3 conflicts: teacher 1 teaching courses 1 through 4 has conflicts period 3 and 4, and teacher 2

teaching courses 5 through 8 also has a conflict period 4. This single crossover has improved the

population pool of chromosomes. One of the solutions now only has two conflicts to resolve.

Mutation for the scheduling algorithm was implemented as follows:

1. Randomly select a solution in the population

2. Randomly schedule a course during a random period; note, this also involves

canceling the originally scheduled course for the solution

3. Insert the mutated solution into the new population.

The user supplies the rate of mutation. Mutation forces diversity into the population. By

randomly changing bit values in a chromosome, new solutions are introduced into the population

that may not be possible using combinations of existing chromosomes and the crossover operator

exclusively.

5. Results:

A C program was written to test the scheduling genetic algorithm. Convergence to a solution

was dependent on the input parameters and random numbers generated during the simulations.

The algorithm was able to find an acceptable solution in most cases.

Results of a typical simulation are displayed in Figure 1. In this example there are 5 teachers, 5

periods, 20 classes and a population size of 10. Notice the total conflict within the population is

decreasing over time, hence, a solution is evolving. The average fitness of all solutions in the

population is increasing. The algorithm was able to find one acceptable solution within the

population of 10 solutions with no conflicts after only 50 iterations.

Note that the decrease in conflict is not monotonic from generation to generation. Although

additional conflict may be introduced using the genetic operators of both crossover and mutation,

the overall trend is a reduction of total conflict.

The relation of population size and convergence time was tested using 10 teachers, 5 class

periods, 40 courses and with probabilities of mutation (.2) and crossover (.8). Figure 2 displays

the results of the population size vs. average convergence time (iterations) for 10 trials with each

population size. Note, population sizes of 5, 6 and 7 were also tested but only 2, 8 and 8 trials,

respectively, converged to a solution within the 1000 iteration imposed time limit.

An increased population size tends to reduce the number of iterations required for convergence

to a solution. Increasing the population size does require extra processing time to maintain and

manipulate the additional chromosomes. It is not feasible to increase the population size to

include all possible solutions since this would be combinatorialy exhaustive. The larger the

population size the more raw genetic material the algorithm has to use in its directed search. For

small population sizes, with reduced genetic material available, it may be necessary to increase

the mutation rate to offer additional variety into the population. This can be seen below.

The relation between mutation rate and convergence was investigated in the scheduling

algorithm. Figure 3 displays the average number of iterations required, in ten simulations, for

convergence to a solution using 5 teachers 5 periods, 20 classes and 10 chromosomes in the

population. When the probability of mutation was set to 0, implying the use of crossover

exclusively, only two of the ten trials converged. Although mutation is not an absolute

requirement for convergence it significantly improved the convergence rate and reduced the

iterations required to converge.

When the probability of mutation was set to 0 and 8 of 10 simulations did not converge to a

solution, convergence was to a good solution – there were few total conflicts. Good solutions

can be viewed as local minima in the search space of all possible solutions. Mutation provides

for a means of escaping from such localized minimum as seen in the results.

6. Scheduling Genetic Algorithm Extensions:

There are a number of extensions, in the form of additional constraints, which would make this

genetic scheduling algorithm more practical, such as including room assignments (one class per

room), prioritizing faculty course requests, including faculty availability, leveling course loads

over all times (periods), etc… Each of these extensions will cause additional conflict in the

population of solutions. Some of the conflicts may have precedence over others, for example it

may be more important to schedule all classes in their own rooms with no teacher conflicts than

to level the load and allow for teacher priorities. Including these and other extensions would

require redefinition of the fitness function and changes to the chromosome structure for encoding

constraints and conflict.

7. Conclusions:

The genetic scheduling algorithm provides an attractive alternate method of scheduling. It

employs a structured yet randomized approach in the search process for a solution. The

algorithm does not guarantee convergence to an optimal solution, rather, only, that it will

converge to some minimum. Increasing the population size appears to reduce the number of

iterations required for convergence. The additional expense is in the increased processing time

of the larger populations. Mutation is a necessary genetic operator in practical applications. It

provides a means of introducing novel, alternate solutions into the population pool that would

not otherwise be examined when using crossover and selection with proportional fitness.

References:
[1] J.Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975, 1992 (second

edition)

[2] D.Goldberg, Genetic Algorithms in Search, Optimization and Machin Learning, Addison Wesley, 1989

[3] D.Lawrence, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991

[4] W.Junginger, Evolutionary Algorithms in Management Applications (Biethahn and Nissen eds.), Springer-

Verlag, Germany, 1995

Tables and Figures:

Typical Convergence for Scheduling Genetic

Algorithm

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Iterations

T
o
ta
l
C
o
n
fl
ic
t
in
 P
o
p
u
la
ti
o
n

Figure 1 - Convergence of Scheduling Genetic Algorithm

Population Size vs. Convergence Time

0

100

200

300

400

500

600

700

0 10 20 30 40 50

Population Size

A
v
e
ra
g
e
 I
te
ra
ti
o
n
s
 t
o
 C
o
n
v
e
rg
e

Figure 2 - Population Size vs. Convergence Time

Mutation Rate Effect

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2

Mutation Rate

A
v
e
ra
g
e
 I
te
ra
ti
o
n
s
 t
o
 C
o
n
v
e
rg
e

Figure 3 - Mutation Rate Effect

Courses
Table 1

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 1

3 0 0 1 0 0 0 1 0

4 0 0 0 1 0 1 0 0

Periods

5 0 0 0 0 1 0 0 0

Table 1 – Boolean Solution Matrix – One Chromosome

