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Abstract:  Genetic algorithms use concepts from evolutionary biology as a technique for solving 

problems.  They have successfully been used on a large number of scientific and engineering 

problems such as: optimization, machine learning, adaptive systems behavior and complexity.  

The genetic algorithm evolves over time a population of potential solutions by randomly selecting, 

based on fitness, solutions to reproduce a population of next generation solutions using crossover 

and mutation of solution parameters.  This paper presents the genetic algorithm, necessary 

terminology, operations for selection, crossover, mutation, fitness, and gives an example in the 

area of scheduling. 
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1. Introduction: 

The genetic algorithm is a problem solving technique that uses the metaphor of 

evolutionary biology in its approach.  A population of potential solutions are 

generated and tested for their ability to solve the problem.  If one of the solutions 

solves the problem the process is complete. If not, a new population of solutions 

is generated using parts of the better performing solutions from the previous 

population, and the process of evolving a solution continues.   

 

John Holland [1] developed genetic algorithms as an abstraction of biological 

evolution and provided the mathematical framework for adaptation of genetic 

algorithms.  Many problems involve searching through a large number of 

possibilities for a solution. Other computational problems require programs to be 

adaptive.  Still others require new or novel ideas in their solutions.  Genetic 

algorithms are well suited to these types of problems.  They have successfully 

been used for problem solving in such areas as machine learning, robotics, 

adaptive systems and optimization [2] [3]. 

 

2. Genetic Algorithm and Terminology: 

Species (solutions) evolve over time through variation of genetic material by 

mutation and recombination.  Individuals with better genetic material, based on 

environmental considerations, are more likely to survive into the next generation.  

The notions of genetic material, exchange of genetic material and survival of the 

fittest are fundamental to evolution and the development of genetic algorithms. 

 



From biology each cell in an individual organism contains identical chromosomes.  The 

chromosomes consist of genes (strings of DNA) where each gene can be thought of as encoding 

one trait of an organism.  Each species genetic material is held by the collection of individuals in 

that species.  Genetic algorithms use a chromosome as a potential solution to a problem.  Each 

gene in the chromosome can be thought of as a trait or parameter that will help in solving the 

problem.  The problem space is usually multidimensional, so each gene represents one 

dimension of the solution.  The chromosome can be thought of as an array of traits.  Collectively, 

all solutions (chromosomes) are called the population.  The most common way to encode traits 

as genes in chromosomes is to use a binary string where each bit represents some trait of the 

solution. 

 

In sexual reproduction each parent contributes some genes from their chromosomes to spawn a 

new offspring.  Occasionally, one or more of the genes of the offspring may mutate and be 

different from their parents.  Genetic algorithms use the term genetic operators for this exchange 

and change of genetic material.  The two most commonly used genetic operators are 

recombination (sometimes called crossover) and mutation.  In single point crossover, two parents 

are selected, a point (location) in the chromosome is randomly selected and two offspring are 

produced as follows: one offspring consists of chromosomes from the first parent up to the 

crossover point and the balance of the genes are taken from the second parent; and the second 

offspring is made up from the unused genes of the first and second parent.  Multipoint crossover 

is also possible.  The mutation operator involves toggling one or more of the bits in the 

chromosome when using bit strings.  The user defines the probability of mutation (P(m)) and 

crossover (P(c)).  P(m) is usually set quite low.  It provides a means of introducing new genetic 

information into the gene pool and prevents the algorithm from getting stuck in local minimums.  

Note, P(m)=1 degrades the genetic algorithm into a random search.  P(c) is usually set much 

higher since we do want to simulate evolution from generation to generation by producing new 

offspring in search of a solution.  P(c) regulates what percentage of the new population will be 

created by crossover and the balance will come from the existing population.  Note, it is a good 

idea to carry over some of the most fit (better) solutions from generation to generation. 

 

Survival of the fittest is accomplished in the genetic algorithm by selecting two parents 

according to a fitness function for crossover (reproduction).  The idea is that better solutions can 

be found in offspring by combining highly fit parental chromosomes from the current population.  

Fitness for each chromosome is a function of the underlying genes (dimensions of the problem).  

It measures how fit the chromosome is with regard to being a solution to the problem.  The 

fitness function is domain dependent and defined by the designer of the genetic algorithm.  One 

common method of selecting chromosomes for crossover is proportional fitness selection where 

the probability of being selected is proportional to the chromosomes fitness with regard to the 

whole populations fitness (like a roulette wheel).  Another common method is selection based on 

ranked fitness.  In either method, the higher the fitness the more likely the chromosome will be 

selected for reproduction. 

 

The genetic algorithm creates a population of N solutions and then iteratively – evaluates the 

fitness of each solution, generates a new population of size N using crossover and mutation with 

P(c) and P(m) – until a solution is found or termination condition is met (possibly the number of 

iterations) and is given below. 



 _______________________________________________________ 

 Initialize a population of N chromosomes (usually done randomly) 

 Repeat 

  Evaluate all chromosomes using fitness function 

  Clear new population 

  While (new population is not full) 

   Select 2 chromosomes from population 

   Using P(c) generate two new offspring or 

    Use two selected from population 

   Using P(m) mutate offspring 

   Insert offspring into new population 

  End while 

  Update population with new population 

 Until (termination condition is satisfied) 

 _______________________________________________________ 

 

3. Course Scheduling Problem: 

Each semester universities and colleges need to schedule courses for their next semester.  There 

are many constraints in scheduling courses (or scheduling tasks in general), such as faculty 

availability and preferences, room allocation, time considerations and leveling courses over all 

days and periods.  The use of a genetic algorithm to solve course-scheduling problems was 

motivated by Junginger [4].  A simplistic view of scheduling is to match each task in a task list 

(courses) with a specific time (period) such that there are no schedule conflicts (teaching, room 

assignments, …).  The genetic algorithm that I propose only takes into consideration teaching 

assignment conflicts – no teacher can teach two courses during the same time period. 

 

The course scheduling problem is then stated as follows – given: 

 

  C   a set of courses 

  P   a set of periods (times) 

  T   a set of teachers 

  A: T-> POW(C) a course assignment function for the set 

     of teachers to the power set of C, 

 

find an assignment from C->P (courses to periods) under the constraint that A(t) cannot teach 

two courses during the same period over all teachers. 

 

4. Scheduling Genetic Algorithm: 

The genetic algorithm as described in section 2 was used.  Problem encoding, fitness evaluation, 

selection, crossover and mutation details are given below.  User defined parameters to the 

scheduling genetic algorithm are: 

 

 P(c) probability of crossover 

 P(m) probability of mutation 

 N number of chromosomes (solutions) for the GA to process 

 C number of courses 



 P number of periods (schedule times) 

 T number of teachers 

 ITS maximum number of iterations to evolve the population 

  without finding a solution 

 

Each teacher is required to teach four courses.  For simplicity it is assumed that the first teacher 

teaches courses 1-4, the second teacher the next 4 and so on. 

 

4.1 Problem Encoding: 

A schedule solution (chromosome) can be represented with a Boolean matrix.  Rows represent 

periods and the columns represent the courses being offered for the semester being scheduled.  

An entry of 1 in the solution matrix represents a course being taught in the given period and a 0 

not being taught.  Note, each column in the matrix representation will have exactly one 1, i.e.) 

the course must be scheduled for exactly one period. 

 

As an example let C={1,2,3,4,5,6,7,8}, P={1,2,3,4,5}, T={1,2}, A(1)={1,2,3,4} and 

A(2)={5,6,7,8}.  Here we have 8 courses, 5 periods, and 2 teachers with the first teacher teaching 

courses 1 through 4 and the second teaching 5 through 8.  One possible solution is given below 

in Table 1.  The solution is not unique, but it is optimal in the sense that there are no conflicts (a 

teacher teaching more that one course in one time period). 

 

4.2 Fitness Evaluation and Selection: 

Proportional fitness is calculated and used for selection in the scheduling genetic algorithm.  The 

fitness of each possible solution (chromosome) is inversely proportional to the amount of 

conflict within the solution.  A better solution will have less conflict.  The fitness is calculated as 

follows: 

 

1. Calculate the teaching assignment (course) conflict of each possible solution in the 

population by counting the number of periods with more than one course scheduled 

for each teachers 

2. Total the conflicts for all chromosomes (solutions) in the population 

3. The independent fitness of each solution is the reciprocal of each solutions conflict 

4. Rescale each solution fitness (3) proportionately with respect to the total population 

fitness (2) 

 

An example is given below. 

 

 Solution Conflicts Fitness  Proportional Fitness 

  1  8 1/8  (1/8)/.801 = .156 

  2  5 1/5  (1/5)/.801 = .250 

  3  3 1/3  (1/3)/.801 = .416  

  4  7 1/7  (1/7)/.801 = .178 

 totals            23 .801          1.000 

 



Selection of chromosomes for crossover was accomplished by using the proportional fitness of 

each solution as the probability for being selected for mating.  Note, chromosome 3 has the 

highest probability of being selected and the fewest number of teaching assignment conflicts. 

 

4.3 Crossover and Mutation: 

Single point crossover was used in the scheduling genetic algorithm.  This operation produces 

two offspring, which are added to the new population.  The crossover point is a randomly 

selected column.  Course schedules after the crossover column are exchanged by the two 

selected chromosomes to form two new offspring.  The example below illustrates crossover at 

(after) course 5. 

 

  One solution    Another solution 

Period/course 1  2  3  4  5* 6  7  8   1  2  3  4  5* 6  7  8 

1  0  0  0  0  0* 1  0  0     0  0  0  0  0* 0  0  0 

2  0  0  0  0  1* 0  0  1   0  0  0  1  0* 0  0  0 

3  1  0  0  1  0* 0  0  0     1  0  1  0  1* 0  1  0 

4  0  1  1  0  0* 0  1  0     0  0  0  0  0* 1  0  1 

5  0  0  0  0  0* 0  0  0     0  1  0  0  0* 0  0  0 

 

  One new offspring solution  Another new offspring solution 

Period/course 1  2  3  4  5* 6  7  8   1  2  3  4  5* 6  7  8 

1  0  0  0  0  0* 0  0  0     0  0  0  0  0* 1  0  0 

2  0  0  0  0  1* 0  0  0   0  0  0  1  0* 0  0  1 

3  1  0  0  1  0* 0  1  0     1  0  1  0  1* 0  0  0 

4  0  1  1  0  0* 1  0  1     0  0  0  0  0* 0  1  0 

5  0  0  0  0  0* 0  0  0     0  1  0  0  0* 0  0  0 

 

Both original solutions have a conflict of 3 before crossover and conflicts of 3 and 2, 

respectively, after crossover.  The conflicts are underlined.  For example the first new offspring 

has 3 conflicts: teacher 1 teaching courses 1 through 4 has conflicts period 3 and 4, and teacher 2 

teaching courses 5 through 8 also has a conflict period 4.  This single crossover has improved the 

population pool of chromosomes.  One of the solutions now only has two conflicts to resolve. 

 

Mutation for the scheduling algorithm was implemented as follows:  

 

1. Randomly select a solution in the population 

2. Randomly schedule a course during a random period; note, this also involves 

canceling the originally scheduled course for the solution 

3. Insert the mutated solution into the new population. 

 

The user supplies the rate of mutation.  Mutation forces diversity into the population.  By 

randomly changing bit values in a chromosome, new solutions are introduced into the population 

that may not be possible using combinations of existing chromosomes and the crossover operator 

exclusively. 

 

5. Results: 



A C program was written to test the scheduling genetic algorithm.  Convergence to a solution 

was dependent on the input parameters and random numbers generated during the simulations.  

The algorithm was able to find an acceptable solution in most cases. 

 

Results of a typical simulation are displayed in Figure 1.  In this example there are 5 teachers, 5 

periods, 20 classes and a population size of 10.  Notice the total conflict within the population is 

decreasing over time, hence, a solution is evolving.  The average fitness of all solutions in the 

population is increasing.  The algorithm was able to find one acceptable solution within the 

population of 10 solutions with no conflicts after only 50 iterations. 

 

Note that the decrease in conflict is not monotonic from generation to generation.  Although 

additional conflict may be introduced using the genetic operators of both crossover and mutation, 

the overall trend is a reduction of total conflict. 

 

The relation of population size and convergence time was tested using 10 teachers, 5 class 

periods, 40 courses and with probabilities of mutation (.2) and crossover (.8).  Figure 2 displays 

the results of the population size vs. average convergence time (iterations) for 10 trials with each 

population size.  Note, population sizes of 5, 6 and 7 were also tested but only 2, 8 and 8 trials, 

respectively, converged to a solution within the 1000 iteration imposed time limit. 

 

An increased population size tends to reduce the number of iterations required for convergence 

to a solution.  Increasing the population size does require extra processing time to maintain and 

manipulate the additional chromosomes.  It is not feasible to increase the population size to 

include all possible solutions since this would be combinatorialy exhaustive.  The larger the 

population size the more raw genetic material the algorithm has to use in its directed search.  For 

small population sizes, with reduced genetic material available, it may be necessary to increase 

the mutation rate to offer additional variety into the population.  This can be seen below. 

 

The relation between mutation rate and convergence was investigated in the scheduling 

algorithm.  Figure 3 displays the average number of iterations required, in ten simulations, for 

convergence to a solution using 5 teachers 5 periods, 20 classes and 10 chromosomes in the 

population.  When the probability of mutation was set to 0, implying the use of crossover 

exclusively, only two of the ten trials converged.  Although mutation is not an absolute 

requirement for convergence it significantly improved the convergence rate and reduced the 

iterations required to converge. 

 

When the probability of mutation was set to 0 and 8 of 10 simulations did not converge to a 

solution, convergence was to a good solution – there were few total conflicts.  Good solutions 

can be viewed as local minima in the search space of all possible solutions.  Mutation provides 

for a means of escaping from such localized minimum as seen in the results. 

 

6. Scheduling Genetic Algorithm Extensions: 

There are a number of extensions, in the form of additional constraints, which would make this 

genetic scheduling algorithm more practical, such as including room assignments (one class per 

room), prioritizing faculty course requests, including faculty availability, leveling course loads 

over all times (periods), etc…  Each of these extensions will cause additional conflict in the 



population of solutions.  Some of the conflicts may have precedence over others, for example it 

may be more important to schedule all classes in their own rooms with no teacher conflicts than 

to level the load and allow for teacher priorities.  Including these and other extensions would 

require redefinition of the fitness function and changes to the chromosome structure for encoding 

constraints and conflict. 

 

7. Conclusions: 

The genetic scheduling algorithm provides an attractive alternate method of scheduling.  It 

employs a structured yet randomized approach in the search process for a solution.  The 

algorithm does not guarantee convergence to an optimal solution, rather, only, that it will 

converge to some minimum.  Increasing the population size appears to reduce the number of 

iterations required for convergence.  The additional expense is in the increased processing time 

of the larger populations.  Mutation is a necessary genetic operator in practical applications.  It 

provides a means of introducing novel, alternate solutions into the population pool that would 

not otherwise be examined when using crossover and selection with proportional fitness. 
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Figure 1 - Convergence of Scheduling Genetic Algorithm 

 



Population Size vs. Convergence Time
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Figure 2 - Population Size vs. Convergence Time 

 

Mutation Rate Effect

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2

Mutation Rate

A
v
e
ra
g
e
 I
te
ra
ti
o
n
s
 t
o
 C
o
n
v
e
rg
e

 

Figure 3 - Mutation Rate Effect 

 

Courses 
Table 1 

1 2 3 4 5 6 7 8 

1 1 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 1 

3 0 0 1 0 0 0 1 0 

4 0 0 0 1 0 1 0 0 

Periods 

5 0 0 0 0 1 0 0 0 

Table 1 – Boolean Solution Matrix – One Chromosome 


