
AC 2009-2175: A GENTLE INTRODUCTION TO ADDRESSING MODES IN A
FIRST COURSE IN COMPUTER ORGANIZATION

Eric Freudenthal, University of Texas, El Paso
Eric Freudenthal is an Assistant Professor of Computer Science at the University of Texas at El
Paso.

Brian Carter, University of Texas, El Paso
Brian Carter earned a B.S. in Computer Science at the University of Texas at El Paso. He is now
a software engineer at Lockheed Martin.

© American Society for Engineering Education, 2009

P
age 14.31.1

A Gentle Introduction to Addressing Modes in a First Course in Computer

Organization

Abstract

This paper describes the reform of a sophomore-level course in computer organization for the

Computer Science BS curriculum at The University of Texas at El Paso, where Java and

integrated IDEs have been adopted as the first and primary language and development

environments. This effort was motivated by faculty observations and industry feedback

indicating that upper-division students and graduates were failing to achieve mastery of non-

garbage-collected, strictly imperative languages, such as C. The similarity of C variable

semantics to the underlying machine model enables simultaneous mastery of both C and

assembly language programming and exposes implementation details that are difficult to teach

independently, such as subroutine linkage and management of stack frames. An online lab

manual has been developed for this course that is freely available for extension or use by other

institutions.

Our previous papers reported on pedagogical techniques for facilitating student understanding of

the relationships between high-level language constructs, such as algebraic expression syntax,

block-structured control-flow structures, and composite data types, along with their

implementations in machine code. While this integrated approach to introducing control-flow

structures has been successful, many students have been confused by the large number of

different addressing modes. The present paper describes further extensions of this integrated C-

and-assembly language pedagogical approach in which addressing modes are introduced

incrementally as solutions to pragmatically motivated problems. Initial results, as measured by

quizzes and in-class exercises, are highly encouraging.

Introduction

We report on reforms to a sophomore-level course in computer organization at an ABET-

accredited Computer Science Department. The department has adopted an object-first

curriculum as defined by the ACM Computing Curriculum 2001 Report
4
 where Java is used as

the principal teaching language in most major coursework. As we reported previously,
1,2

 after

adoption of this object- and Java-centric pedagogical approach, faculty teaching upper-division

courses and potential employers detected a dramatic reduction in upper-division students’ ability
to understand or design programs written in strictly imperative languages that reflect the

semantics of the underlying memory model, such as C. Schonberg and Dewar report similar

observations of students graduating from other programs that adopted Java- centric curricula.
5

While these deficits are not common at schools with architecture-first curricula,
3,4,5

 object-centric

curricula are asserted to provide complementary advantages. Rather than taking a position on

whether architecture-first curricula are strictly superior to object-first, we implemented

compensatory reforms that appear to be successful, as observed by upper division systems

faculty and employers who report that recent graduates have attained a dramatically improved

ability to program in C.

 P
age 14.31.2

Like Schonberg and Dewar, we conjectured that these problems are likely due to the large

semantic gap between the formal semantics of Java as the principal language used by students to

solve problems in coursework and the low-level languages such as C whose semantics are much

more similar to the underlying instruction-set-architectures. As reported previously
1,2

 our

primary intervention has been the reform of a sophomore-level course in computer organization

titled “Architecture I.” Students attending this course must develop mastery of a large number of

concepts including the representation and encoding of an instruction set, the mechanics of

separate compilation and linkage, signed and unsigned arithmetic, control flow, the various roles

of registers and random-access memory, and the function of a range of addressing modes.

We exploit the syntactic similarity between Java and C: students attending Architecture I are

already familiar with Java, so they are already familiar with much of C’s syntax. Further, we

exploit the semantic similarity between C and assembly language by interleaving their

instruction in a manner where high-level C constructs and their low-level assembly-language

“implementations” are simultaneously presented. This direct examination of C’s implementation
renders C’s otherwise opaque semantics intuitively apparent. Furthermore, this presentation

exposes students to a range of compilation techniques that motivates further study; students who

have completed the reformed course attended a well-subscribed course in compilation techniques

which was previously canceled multiple times due to insufficient enrollment.

Our previous reports describe the tools used in the course
1
 and the exploitation of

transformations used by compilers to translate simple control-flow (if-then-else), composite

types, and expressions to assembly language.
2
 We observe that students have the most trouble

mastering addressing modes and exploitation of arithmetic condition codes. After these reforms

were implemented, we observed that students had sustained confusion regarding the semantics

and roles of the available addressing modes which was frustrated by their need to simultaneously

reason about numeric representations and arithmetic condition codes. Subsequent reforms

addressed this confusion through the incremental presentation of addressing modes in a manner

that permits students to master these concepts sequentially rather than concurrently.

Expressions-first Approach

The course begins with a brief review of Boolean signed and unsigned arithmetic, which is

followed by an introduction to variable declarations and expression syntax in C, focusing on

similarities with Java. Our course utilizes Texas Instruments’ MSP430 processor, which has an

“absolute” direct addressing mode that can be used for both source and destination operands, and
permits, for the purposes of these early exercises, all variables (and even constants) to be

statically stored at fixed addresses in memory.

Table 1: Limited form of two-operand instructions, as presented in class.

Instruction Extension Word 1 Extension Word 2

High nibble Nibble2 Nibble2 Low nibble Address of source

operand

 Address of dest.

operand Operation 2 9 2

 P
age 14.31.3

A small set of instructions required for simple algebraic operations and the reduced two-operand

instruction format of Table 1 are presented along with pseudo-ops to reserve memory for storing

variables (and constants). Labels are presented at the same time and opportunities to practice are

provided through in-class exercises. After just a few lectures, students are competently

translating C code snippets into assembly and machine language. Typical projects, which are

first practiced in groups and then individually, are illustrated in the first two examples in Table 2.

Table 2. Example of early arithmetic code snippet translation projects that use only absolute

addressing mode. On this processor, operation codes for two-operand instructions are specified by

the most significant nibble and 0x292 specifies that both operands are “absolute” direct-mode

addresses stored in extension words.

C Source Code Assembly Language Machine Code

short a, b,
one=1;

a = b + 1;

 .data
a: .word 0
b: .word 0
one: .word 1
 .text
 mov &b, &a
 add &one, &a

1000: 0000
1002: 0000
1004: 0001

2000: 4292 1002 1000
2006: 5292 1004 1000

long a;

a += 0xdeadbeef;

 .data
a: .word 0;low word
 .word 0;high word
onel:.word 0xbeef
 .word 0xdead
 .text
 add &onel, &a
 addc &onel+2, &a+2

1000: 0000
1002: 0000
1004: beef
1006: dead

2000: 5292 1004 1000
2006: 6292 1006 1002

unsigned short a;

if (a >= 1)
 a++;

 .data
a: .word 0
one: .word 1
 .text
 cmp &one, &a
 jc isNeg
 add &one, &a
isNeg:

1000: 0000
1002: 0001

2000: 9292 1002 1000
2006: 2d03 (+3 words)
2008: 5292 1002 1000
200c:

After students develop competence using direct addressing mode and linearization of arithmetic

expressions (as measured by daily in-class quizzes), we present the role of arithmetic condition

codes in implementing relational operators (equal to, less than, etc.), conditional branching, and

multi-word arithmetic (e.g., add with carry) as illustrated by the last example in Table 2 without

the added complication of addressing mode selection.

A preliminary version of this course took the complementary approach of initially presenting

register addressing modes. However, the need to include constants in expressions inconveniently

necessitated the introduction of immediate addressing modes.

P
age 14.31.4

Introduction of Registers and Indexed Addressing Mode

As illustrated in Table 3, which is adapted from the MSP-GCC project’s [7] documentation, the

encoding of binary operations is complex and is specified as a sixteen-bit integer that references

two registers and contains three control fields: a destination addressing mode (Ad), an operand

size selector (Byte), and a source addressing mode (As). Addressing modes 0 and 1 are available

for both source and destination operands, and two additional addressing modes, 2 and 3, are

available for source operands. Registers four through fifteen are general-purpose, R0 is the

program counter, R1 is the stack pointer, and R2 and R3 principally serve as constant generators

with varying value and interpretation, depending upon the addressing mode being used.

Table 3. Encoding of two-operand (binary) instructions and addressing modes.

High nibble (3) Nibble2 Nibble1 Low nibble (0)

Operation source register Ad Byte As

destination register

Aa Register Syntax Mode Description

 0 N Rn Register Operand is the contents of Rn

1 N x(Rn) Indexed Operand in memory at Rn+x (x within extension word)

2 N @Rn Indirect Operand in memory at address held in Rn.

3 N @Rn+ Indirect Autoincrement . As above; then the register is incremented by 1 or 2.

Addressing modes using R0 (PC)

1 0 (PC) LABEL PC-relative Operand is in memory at address PC+x (x(PC).

3 0 (PC) #x Immediate Operand in extension word. (@PC+)

Addressing modes using R2 and R3, special-case decoding

1 2 (SR) &LABEL Absolute Operand in memory at address specified by extension word.

2 2 (SR) #4 Constant Operand is the constant 4.

3 2 (SR) #8 Constant Operand is the constant 8.

0 3 (CG) #0 Constant Operand is the constant 0.

1 3 (CG) #1 Constant Operand is the constant 1.

2 3 (CG) #2 Constant Operand is the constant 2.

3 3 (CG) #-1 Constant Operand is the constant -1

Ad: Only addressing modes 0 and 1 are available for the destination operand.

Thus, absolute addressing mode used in early examples of two-operand instructions (see Table 1)

is a variant of indexed addressing mode in which R2 provides a zero offset.

Register addressing mode is specified by using zero for either Ad and As and is therefore

relatively straightforward for students to comprehend. Registers are initially introduced as

convenient storage for temporary values. Later they are exploited by indexed addressing modes

to provide a mechanism to implement pointers.

Thus, indirect modes are introduced together after students have mastered the use of arithmetic

operations and branching including use of arithmetic flags. While indirect mode provides the

most efficient mechanism to dereference pointers (it is only available for source operands), we

delay teaching it until after students are comfortable with pointer dereferencing using indexed

P
age 14.31.5

P
age 14.31.6

begin to hypothesize that other instructions would be useful with each addressing mode. In this

way, students fully understand the significance of instructions and addressing modes, often even

before they are formally introduced to the class.

References
1
Eric Freudenthal, Brian Carter, Frederick Kautz, Alexandria Ogrey, Robert Preston and Arthur Walton, Integration

of C into an Introductory Course in Machine Organization, Proc. ASEE Annual Conference, June 2008.
2
Eric A. Freudenthal, Brian A. Carter, Frederick F. Kautz, and Alexandria N. Ogrey, Work in Progress - Combined

Introduction of C and Assembly with a Focus on Reduction of High-level Language Constructs. Proc.

Frontiers of Education, 2008.
3Patt, Yale, “Education in Computer Science and Computer Engineering Starts with Computer Architecture,” ACM

1996 proc. 1996 Workshop on Computer Architecture Education.
4
Patt, Yale and Patel, Sanjay, Introduction to Computing Systems. McGraw Hill, 2004. ISBN 0-07-121503-4.

5
Association for Computing Machinery, Computing Curricula 2001 Computer Science, ACM,

http://www.sigcse.org/cc2001/cc2001.pdf
6
Dewar, Robert and Sconberg, Edmond, “Computer Science Education: Where are the Software Engineers of

Tomorrow,” STSC Crosstalk, January 2008.
7
Steve Underwood, MSPGCC project documentation. http://mspgcc.sourceforge.net/

P
age 14.31.7

