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Abstract 
Traditional curricula often teach low-level fundamentals of digital logic before introducing 
students to the ‘higher-level’ topics of microprocessors and the Internet Of Things (IOT).  An 
alternative and potentially more motivating approach is to reverse this sequence.  This paper 
describes the design of a new hardware kit and sequence of laboratory exercises which aim to 
give students hands-on experience with Embedded systems and IOT at an early stage in their 
academic careers.  The kit is based on a low-cost, wireless-networked, 32-bit ARM 
microcontroller with integrated Cloud support.  The sequence of lab exercises which build 
incrementally on one another is described in detail, and the experience gained running them for 
the first time is reported.  Outcomes relate to the ability to extend knowledge from an associated 
lecture course in order to apply, analyze and create embedded / IOT solutions to practical 
engineering problems.  Rubric-based assessment demonstrates that the large majority (>90%) of 
the class met these outcomes.  A further outcome relates to improved motivation and learning 
through reversing the traditional course sequence.  Assessment of this outcome is still a work in 
progress but initial survey results are encouraging and show that the course was well received. 
 
Introduction 
Embedded systems and the Internet of Things (IOT) are becoming increasingly important with 
approximately the same number of IOT devices as people on the planet [1], so it is important to 
reflect these changes in the Engineering Curriculum.  Traditional courses tend to adopt a 
‘bottom-up’ approach, starting with elementary logic gates and Boolean algebra and only later in 
the curriculum reaching the level of microprocessor development or networked applications [2], 
[3].  The recent availability of increasingly powerful, yet low-cost, wireless networked devices 
makes it much more feasible to adopt a ‘middle-out’ approach, where students get to experience 
and use embedded systems and IOT, before delving deeper into the details of how such systems 
are constructed at the circuit level or integrated in a networked environment.  This paper 
describes a new hardware kit and sequence of exercises which aim to support this approach by 
giving students hands-on experience with Embedded systems and IOT at an early stage in their 
academic careers.  Based on the rapid growth and enthusiasm observed in the ‘maker’ 
community, it is postulated that this approach will help engage students and motivate them for 
later, more in-depth courses in the field.  Alternatively, for those students who have only limited 
opportunities for further study in this discipline (such as Mechanical Engineering students or 
Mechatronics minors) it is postulated that the new course is more practical and relevant to their 
needs compared to a traditional first course in fundamental Digital Logic Design.  Finally, it 
should be noted that the kit is fully mobile so for most (though not all) of the lab assignments, 
students are not constrained to working in the traditional laboratory environment.  This aspect 
proved critical in the response to the COVID-19 crisis since students were able to continue the 
lab assignments in their home environments. 
 
The need to introduce IOT into the curriculum has been recognized by a number of authors:  A 
freshman year initiative is described in reference [4] where four introductory IOT labs and a 



project are introduced in a C++ programming course.  The labs were shown to increase student 
motivation, and ongoing work was directed at developing lighter versions of the labs for non-
ECE students, or high school students.  At the other end of the spectrum, a higher-level IOT 
course is described in reference [5] targeting juniors and seniors in CS, CE, and EE.  The course 
used a single custom hardware device (a smart desk-lamp) and focused more on the high-level 
aspects of IOT, e.g. MQTT brokers, web service providers and frameworks, data analytics and 
security.   Another junior/senior level course is described in reference [6] where a more 
traditional computer networking course is revamped to gear all the topics towards IOT.  The 
current work is perhaps most similar to reference [7], though this was designed for 2-year 
Technical Community College students and used a hybrid hardware platform made up of an 
Arduino and Raspberry Pi. 
 
In this work, the aim was to develop a sophomore level course targeted primarily at 4-year BS 
EE students, but also taken by some ME students as part of a Mechatronics minor.  The course 
therefore addresses a potential gap between some of the prior works discussed above.  Most 
students had already taken a C programming course in their freshman year, and this meant that 
there was more time to address fundamental principles and hardware interfacing than might be 
possible in a freshman course, but it was also not appropriate to go into too much detail on 
networking, data analytics or security.   
 
Specifically, the course aims to introduce some of the fundamentals of computing (basic 
computer architecture, memory, number systems, elementary Boolean logic etc.) while also 
teaching the practicalities of interfacing, interrupt handling, cloud programming, serial 
communications (UART, SPI, I2C etc.), and the programming of finite state machines.  Initially 
students explore the input/output (I/O) capabilities of the device, focusing on digital, analog, and 
PWM signals, and using these to control LED’s, buzzers, and small dc motors.  This work 
culminates in a project where the students connect their boards to a small mobile robot and 
encode a simple line-following application.  Students then explore interrupt handling and 
communications, first with cloud-based systems using their boards to send notifications via 
IFTTT to their gmail or mobile phone accounts, and then more locally using serial protocols to 
communicate between devices and smart sensors.  Finally, the labs conclude with an open-ended 
burglar alarm system project, based heavily on finite state machines.  The base project uses a 
reflective light sensor to detect intruders and sounds an alarm when armed, but more 
sophisticated implementations require cloud-based notification and logging, with remote or local 
security-key entry required in order to control the system.  This paper provides details of the lab 
design, and the experience gained running it for the first time in Spring 2019.  Assessment by 
means of post-course survey and lab completion data shows that the course was well received 
with very positive results. 
 
Choice of microcontroller 
A critical choice in the course design was the microcontroller platform to be used.  A large 
variety of devices are available, ranging from very low cost 8-bit machines to more modern 16- 
and 32-bit systems.  Examples include the Board Of Education (BOE) robot, based on an 8-bit 
Basic Stamp microprocessor, [8], [9]. Arduino boards, based on 8-bit Atmel microcontrollers 
have also become popular in the academic community [7],[10], while other educators have based 
their work on 8- or 16-bit MicroChip PIC devices [11],[12].   



 
A more recent trend, however, has been a shift towards 32-bit ARM-based devices, including for 
example ARM-based Arduino designs, [13].  There are several advantages to this approach.  
First, unlike many of the other devices mentioned above, the ARM architecture is not limited to a 
single semiconductor manufacturer but is a licensed technology which is used by a broad range 
of suppliers.  Its RISC architecture is very elegant, making it a common choice for courses on 
Computer Architecture, as well as a dominant force in industry.  Indeed, it is claimed that over 
10 billion ARM devices are sold every year, [3].   
 
As indicated above, however, there is still a very large array of 32-bit ARM based boards to 
choose from.  Table 1 lists a small selection of these.  All have similar cost, but differ somewhat 
in terms of clock speed, RAM, Flash, Communication and I/O capability.  The BBC microBit, 
used particularly in the UK, [14], is the lowest cost but least capable of these devices.  The 
STM32F4 Discovery board, [15],[16], is considerably more powerful, with floating point 
capability and extensive I/O, but it lacks the Wi-Fi capability that allows seamless transition into 
the world of IOT.  Of the two remaining devices, the Raspberry Pi ZeroW is evidently the more 
powerful computing device but it is more of a microcomputer – running the Linux operating 
system, utilizing an SD-card-based file system and even incorporating a camera interface.  The 
Photon, by contrast, is a powerful microcontroller device whose GPIO capability includes 
Analog to Digital and Digital to Analog converters in addition to multiple PWM, SPI, I2C, I2S, 
UART and CAN interfaces.  The device is specifically designed for IOT applications with ‘Over 
The Air’ (OTA) programming and cloud support functionality, while still providing access to 
low-level hardware.   
 

 
Table 1:  A comparison of several low-cost ARM-based boards 

 



The OTA and cloud support functionality is illustrated in Fig. 1.  Users develop source code in 
either a cloud-based, or locally installed Integrated Development Environment (IDE).  [The low-
level Device OS uses the same Wiring code framework as Arduino].  By default, all programs 
are transmitted to the Particle Cloud for compilation, and the resulting executable binaries then 
downloaded wirelessly OTA to the Photon.  No physical connection between the development 
platform and the Photon target is needed although user programs can communicate with a host 
over USB if desired.  User programs can also communicate dynamically with the Particle Cloud, 
and hence to a large number of web services as indicated in the top-right corner of Fig. 1.  
Finally, developers can monitor this traffic, publish events or make PUT / GET http requests by 
logging into a Particle Cloud Console.   
 
This combination of hardware capability and cloud integration resulted in the Photon being 
chosen as the primary platform for this course.  Its small physical footprint, 5V tolerant pins and 
stable design were also significant considerations since robustness and the ability to fit all needed 
components on a half-size breadboard were considered critical. 
 

 
Fig. 1:  The Particle world (normal mode) 

 
Lab kit design 
As noted in Table 1, several boards come equipped with hardwired sensors or display or multiple 
LED outputs.  Rather than adopt such ‘shrink-wrapped’ solutions, the aim in this course was to 
allow students to perform this interfacing themselves using a small, easily portable 3.5” 
solderless breadboard, Fig. 2.  The board brings out 5V and 3.3V supplies to the left and right 
power rails respectively and partially wires several components for use in the labs:  An external 
LED supplements the onboard LED and highlights the need for a current-limiting resistor.  The 
onboard LED cannot be modulated so the external LED is also used to provide visual feedback 
(dimming) when studying Pulse-Width-Modulated (PWM) signals.  Two external pushbuttons 



supplement the onboard pushbuttons and are used to provide digital inputs or to generate edge-
triggered hardware interrupts.  A Reflective Light Sensor (RLS) acts either as a binary object 
detection sensor, or as an analog input measurement of reflected light.  Analog inputs are also 
generated using a 10K potentiometer to provide a fraction of the 3.3 V power supply.  A 
transistor together with a flyback diode, provides the capability to switch larger currents (e.g. in 
order to control a motor) than is possible using the Photon I/O pins directly (even these have a 
relatively high current drive capability of ±20 mA).  Finally, a piezo buzzer provides auditory 
feedback for audio-frequency ‘tone’ signals.  Each kit contains one such breadboard, together 
with a collection of jumper cables for making connections, a 5” USB cable (used in this case 
primarily to provide power to the system), a potentiometer screwdriver, and a small dc motor.  
The total cost, including the Photon itself is approximately $30-35. 
 
 

 

 

 

Fig. 1:  Photon breadboard 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2:  A portable lab kit 
 
Lab Sequence 
 
Simple Digital I/O 
The labs build incrementally on one another, starting with the equivalent of a “hello world” 
program for embedded systems, i.e. a program to flash an onboard LED.  Students quickly 
extend this program to drive an external rather than internal LED.  This simple task highlights 
the relationship between logic levels and physical voltages, and the need for a current limiting 
resistor to be placed in series with the LED.  The logic thresholds for different families of device, 

Ground rail 
Ground rail 

Push-button: BTN0 (white) 

Push-button: BTN1 (white) 

Potentiometer (white) 

LED1 (yellow) 

Transistor base (yellow) 

Buzzer 

Reflective 
Light Sensor 

(white) 

Flyback diode 

Transistor 

 

Onboard LED (D7) 

3.3V Power rail 
5V Power rail 



noise margins, and the output drive stage of logic devices are also covered in the classwork for 
the course.   
 
This material is also relevant in the next step of the assignment where the status of a push-button 
switch is read by a digital input and used so that the LED flashing now only occurs while the 
button is pressed.  Most of the inputs are 5V tolerant, but the input voltage is undefined (i.e. 
floating) when the button is inactive.  Students are therefore introduced to the concept of pull-up 
/ pull-down resistors and the need to pull the inactive level appropriately.  The photon contains 
internal pull-up / pull-down resistors which can be configured through software – though some 
care is needed since these resistors are not 5V tolerant.   
 
To reinforce these issues, and to introduce some elementary Boolean algebra, students are asked 
to modify their program so that flashing occurs if either the pushbutton is pressed OR the 
Reflective Light Sensor detects an object.  The fact that the pushbutton is active high, whereas 
the RLS is active low means that students need to apply their knowledge in a different context.  
This also introduces the RLS as a sensor that can be used to detect an intruder in a burglar alarm 
system which forms part of the final project. 
 
Analog IO 
Lab #2 and its subsections focus on analog I/O in contrast to the digital I/O of the previous lab 
assignment.  A/D conversion, covered in class, is used in the lab to read the voltage from the 
small potentiometer mounted on the protoboard. The potentiometer is connected to one of the 8 
A/D converters that are included among the photon’s peripherals and used to read a digital value 
in the range 0 - 4095.  Students must be able to compute the corresponding input voltage value, 
as well as the converter step-size or resolution. 
 
The aim of this lab, however, is to use the potentiometer input to control the brightness of the 
LED used in the previous lab.  Rather than use a true D/A converter, the lab focuses on the more 
common use of PWM signals where the averaged value yields the output voltage of interest.  In 
this case, the low-level details of setting up timer / counters etc. are hidden beneath an 
analogWrite() function that students call in order to set up the appropriate duty cycle.   However, 
they still need to scale the value obtained from the A/D converter since the duty cycle parameter 
is an integer in the range 0 - 255. 
 
Continuing to highlight the need to consider physical voltage and current constraints, students 
are then asked to use the potentiometer to control both the brightness of the external LED, and 
the speed of a small dc motor included in the kit.  The output drive capability (±20mA) of the 
photon is insufficient for this, so students must use the external transistor (Fig. 2) to switch the 
current from the 5V supply through the motor.  The ‘fly-back’ diode allows the current in the 
motor to decay without inducing high voltages as the transistor switches off (Fig. 3).   
 
To provide more insight into different types of digital waveforms, the next lab sub-section asks 
students to extend their previous work so that as well as controlling the PWM output to the LED, 
the potentiometer also controls the movement of a small servo motor, and the frequency of the 
piezo-electric buzzer on their protoboard.  The servo signal is generated by instantiating a Servo 
object on an appropriate GPIO pin, and then calling its write() function.  The buzzer waveform is 



generated using the tone() function.  In each case the value obtained from the A/D converter 
must be scaled appropriately before use.  Once their programs are working, students are asked to 
compare and contrast these different waveforms using an oscilloscope.  They write a short report 
on their results, showing how the period / frequency, duty-cycle and pulse-width vary in each 
case, illustrating their explanations with oscilloscope screen shots and measurements.  
 

 

Fig.3:  Circuit diagram for Lab #2 
 
Mobile Robot Control 
This initial sequence of lab assignments culminates in a small differential drive mobile robot 
control application, (Fig. 4).  In classwork, the use of external transistors to control larger loads 
such as a dc motor has continued to evolve, including H-bridges for more flexible forward / 
reverse motor control.  In this case, the robot motors are driven by a TB6612 H-bridge driver.  
Students are required to read the TB6612 datasheet and to figure out how to interface their 
photon to the robot and how to program the control lines appropriately.  The students encapsulate 
this low-level functionality in a function which sets left and right wheel motor speeds, where 
positive values indicate forward motion, and negative values indicate reverse.  The main 
program then calls this function in order to drive the robot through a pre-defined sequence of 
maneuvers. Students test their programs by dropping their protoboard into a tailor-made housing 
on top of the robot, hooking up the power, ground, and H-bridge control lines and then observing 
the resulting behavior (Fig.4).  
 
The first robot assignment (above) is typical of open-loop robot control.  In the second robot 
assignment, students program a closed-loop black-line-following strategy using feedback from a 
downwards-facing reflective light sensor mounted on the robot chassis.  The sensor is identical 
to the RLS device students have already encountered in earlier labs.  The RLS is read using one 
of the A/D converters and compared to the voltage from the potentiometer (measured using 
another of the A/D converters).  If the RLS value is less than potentiometer, then the RLS is 
deemed to be seeing the white floor.  Otherwise, it is considered to be seeing the black line.  (The 
black / white decision threshold can be adjusted using the potentiometer in order to account for 
any changes in ambient light).  The resulting ‘error’ signal can then be used to steer the robot 
back towards the black/white line edge so that the robot tracks the line marked on the floor. 
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Fig.4:  Differential drive mobile robot with downwards-facing RLS sensor 
 
Interrupt Handling 
The next phase of the course focuses on events and interrupts.  Embedded systems must be able 
to respond to events that occur in the real world that are unpredictable in the sense that the 
instant at which they occur is not known at the time the program is written.  To emphasize the 
issues involved, the next lab exercise revisits the flashing LED program.  In this case, instead of 
flashing the LEDs when the button is pressed (and held on), the act of momentarily pressing and 
releasing the button should toggle the flashing behavior on or off.  Students must therefore detect 
and respond to the rising edge transition event of the push-button signal. 
 
In the first instance, students are asked to solve this problem using a polling strategy where their 
program repeatedly checks the status of the push-button signal, responding only when this status 
changes from a logic 0 to a logic 1.  This strategy is awkward to program and consumes CPU 
attention so that other tasks are neglected.  Students are therefore asked to re-design their 
program in order to attach an interrupt service routine (ISR) to the rising edge of the push-button 
input signal.  The ISR, which simply toggles a flashingEnabled status flag, is then called 
automatically whenever the event occurs.  Students learn about the ‘volatile’ declaration 
modifier which is used in this case to alert the compiler that the flashingEnabled variable can be 
modified at any point and should therefore not be eliminated through compiler code 
optimization.  Meanwhile, the main program is relieved of the need to poll for events and simply 
flashes the LED’s whenever the flashingEnabled variable is true. 
 
Having learned about hardware interrupts, the next assignment explores onboard-timer-generated 
software interrupts.  Up to this point, the ‘on’ and ‘off’ periods for LED flashing have been 
implemented using the delay() function.  This means that the CPU cannot simultaneously 
maintain the flash rate and perform other tasks.  The next lab assignment therefore asks the 
students to extend their program so that the brightness of the external LEDs can be adjusted 
(using the potentiometer as before) while simultaneously flashing the onboard LED at a 
prescribed rate (assuming flashingEnabled).  This is readily achieved using a timer object to 
generate software interrupts at the desired rate and defining a simple timer ISR to toggle the 
status of the onboard LED whenever this interrupt is generated. 
 



Communicating with the Cloud 
IOT systems are built upon the ability to communicate with the cloud.  This can be achieved 
using one-to-one HTTP requests and responses, or a one-to-many publish / subscribe model.  To 
illustrate the first method, students are asked to expose a variable (in this case containing the 
ADC value read from their potentiometer) so that it can be monitored remotely from the cloud 
using a GET request.  Building on their experience with interrupt handlers, they also write a 
small service routine function to respond to PUT requests.  In this case, the function toggles the 
value of the flashingEnabled variable within their program so that the flashing behavior of the 
system can be modified remotely from anywhere in the world providing the correct security 
access codes are known.  Students test their code by accessing it either through the Particle 
Cloud console, or from a simple html web page they write containing a single button which 
initiates the requisite HTTP/PUT request. 
 
To illustrate the second method, students explore the publish/subscribe model by publishing 
events to the cloud whenever a push-button, connected to their photon, is pressed by the user.  
Some care is necessary to avoid spamming the Particle Cloud server by publishing events too 
rapidly (the maximum permissible rate is 1 event/sec or a burst of up to 4 events/sec), but this is 
unlikely to be exceeded in this case.  Students can observe the event that they generate from the 
Particle Cloud console, but to have it do something more useful they use a web service called 
IfThisThenThat (IFTTT) to subscribe to the event and respond by triggering a wide variety of 
possible actions [17].  In this case, students are asked to send themselves a gmail message 
whenever the event occurs, but it is also simple to send phone notifications, add data to 
spreadsheets, turn other web-enabled devices on/off etc.  More complex cloud programming is 
possible using node-red [18], a graphically oriented environment for wiring together hardware 
devices, APIs and online services but time constraints limited this activity. 
 
Local Communication and Serial Protocols 
Although communicating with the cloud opens new possibilities for IOT, most communications 
with other devices occur locally, so it is important to understand how these communications 
protocols work.  The next lab exercise therefore starts by writing a program for serial 
communication over USB between the photon and a serial monitor on the host PC.  At first, the 
task is simply to echo any messages sent by the host directly back to the host.  This proves that 
communication is working, but the basic program is then extended to echo messages from the PC 
out to any device connected to the Tx pin of the UART port of the photon.  Likewise, any 
message received on the Rx pin of the UART is echoed up to the host PC.  Students can test their 
program in isolation by looping the Tx output back to the Rx input, in which case the overall 
effect is still to echo any messages back to the host.  However, by pairing with another student, 
messages can be sent from one host computer, through the UARTs of two connected photon 
devices, to a second host computer (see Fig. 5). 
 
Having established successful communications in this way, students then explore the signals 
involved by programming a brief repetitive message and looking at the corresponding waveform 
on the oscilloscope.  Students have to check the baud rate, and decode the message (including 
start, stop, parity and error bits) and write a brief report of their observations.  The mechanics of 
I2C and SPI protocols are also covered in class, but time did not permit practical implementation 
in the lab. 



 
 
 
 
 
 
 
 
 
 

Fig.5:  Connecting two student photon boards 
 
 
Finite State Machines and the Final Project 
At this point in the course, students have the ability to handle individual events, whether 
generated by hardware interrupts, onboard timers, or cloud entities, but they still do not have the 
skills to detect and respond appropriately to specific sequences of events.  Such sequential logic 
is a fundamental topic in digital hardware designs and students are often asked design finite state 
machines using elementary flip-flops and logic gates, [2],[3].  Software-based finite state 
machine design is equally important as a programming construct for embedded systems, though 
this does not seem to be taught as often in EE curricula.  One advantage of doing so (in addition 
to its relevance to embedded systems), is that students can learn concepts and practical 
application of finite state machines before having to implement them in the lower-level world of 
digital logic.  Finite state machines were therefore covered extensively in class and formed a 
very large part of the final project which is described in more detail below. 
 
The final project brings together everything the students have learned during the semester in an 
open-ended task that allows all students to demonstrate a baseline of achievement, and stronger 
students to push the boundaries of their knowledge.  The goal is to design a burglar alarm system 
with a variety of features, using a finite state machine program structure.   
 
The basic system has three states, Off, Armed, and Alarm.  The user presses a push-button to 
Arm the system (in which case the LED shines continuously).  Pressing the push-button again 
disarms it back to the Off state (when all LED’s are off).  Any button press is also acknowledged 
by a brief beep on the buzzer.  Once Armed, the system responds to intruders detected by the 
Reflected Light Sensor (RLS) by switching to the Alarm state, during which time the Buzzer 
alarm is sounded with a tone.  The system also alerts the homeowner by sending them an email. 
The Alarm falls silent (but remains Armed) if the intruder is scared off and departs, or if the 
system is disarmed back to the Off state. 
 
A variety of additional features can be added to the project.  These include delayed Arm 
activation and delayed Alarm activation so that the homeowner has 30 seconds after arming to 
leave the building, and 30 seconds to disarm the system when returning to the building – with the 
new states indicated by flashing LEDs.  The alarm itself can also be modified to emit a siren tone 
rather than the single / pure tone used initially.  Students can program a key-code-recognizing 
finite state machine so that users must press the two pushbuttons in the correct key sequence or 
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pattern in order to Arm or Disarm the system.  Cloud-based functionality can be extended so that 
users can activate and deactivate the system remotely, (again requiring the correct digital key in 
order to do so), and so that the system history of events (i.e. the dates and times of activation, 
deactivation and alarms) is automatically logged to a Google spreadsheet.  Students were invited 
to invent and implement their own features, and some did so – the most imaginative of which 
had Siri calmly announcing on their smart phones that a burglary was in progress in their homes! 
 
Outcomes & Assessment 
Outcome #1:  In terms of Bloom’s taxonomy (Fig. 6), the immediate outcome of the lab 
sequence described in this paper is to deepen the level of knowledge and understanding gained 
by the students in an associated lecture course by applying that knowledge to solve a series of 
practical problems.  At this level, the work contributes to ABET Outcome #1, namely “an ability 
to identify, formulate, and solve complex engineering problems by applying principles of 
engineering, science, and mathematics”.  
 
The specific application areas covered by the course are summarized in Table 2.  Formative 
assessment of each application is achieved by demonstrating a functioning program and by an 
evaluation of submitted code according to the following rubric (see later for a summative 
evaluation): 

• Limited:  The program does not work exactly as specified and is lacking in documentation 
and clarity. 

• Satisfactory:  The program functions correctly as specified but could be clearer or more 
elegant; The program is not professionally indented or documented. 

• Mastered:  The program functions correctly as specified; It is well-written and elegant, uses 
a professional indentation style, and is well-documented. 

 
 

Assignment Level Outcome 
a. Simple Digital I/O Apply    #1 
b. Analog I/O (A/D and PWM) Apply    #1 
c. Hardware + Timer Interrupts Apply    #1 
d. Cloud communications Apply    #1 
e. Local / Serial Communication  Apply    #1 
f. Finite State Machines Apply    #1 
g. Digital Signals Report Analyze    #1a,b; #3 
h. Serial Signals Report Analyze    #1e; #3 
i. Line-following Robot Project Create    #1a,b;  #4 
j. Burglar Alarm Final Project Create    #1a-f;  #4 

 
Table 2:  Summary of assignments and corresponding Bloom taxonomy level and Outcomes 

 



 
Fig. 6:  Bloom’s taxonomy pyramid [19] 

 
 
Outcome #2:  A second outcome of the lab sequence addresses higher levels of learning in 
Bloom’s taxonomy is that students should be able to analyze and interpret waveforms obtained in 
selected lab exercises (see Table 2). At this level the work contributes to ABET Outcome #6, 
namely “an ability to develop and conduct appropriate experimentation, analyze and interpret 
data, and use engineering judgment to draw conclusions”.  Students submit a written report 
which is assessed using the following rubric: 

• Limited:  Students obtain the correct waveforms but fail to analyze them or derive 
quantitative measurements from them. 

• Satisfactory:  Students correctly derive quantitative measurements from their waveforms but 
fail to interpret the meaning of these measurements. 

• Mastered:  Students correctly derive quantitative measurements from their waveforms and 
provide a meaningful interpretation of the results. 

 
Outcome #3:  A third outcome of the course addresses the highest level of learning in Bloom’s 
taxonomy that students are able to build on their skills in order to create novel solutions to two 
open-ended projects as indicated in Table 2.  Conveniently, the Line-following Robot project 
also provides a summative evaluation mechanism for the earlier topics in the course, while the 
Final Burglar Alarm System project offers a summative evaluation of all the topics in the course. 
Students submit their code and a written report which is assessed using the following rubric: 

• Limited:  Fails to integrate application skills or to satisfy the base project specification. 
• Satisfactory:  Creatively combines application skills to satisfy the base project specification. 
• Mastered:  Creatively combines application skills to satisfy the base project specification 

and extends this to include at least five additional creative features. 
 
Outcome #4:  A final outcome of the course, as claimed in the introduction, is that students are 
more motivated and learn more effectively by flipping the traditional bottom-up order of courses 
in the curriculum.  Evaluation of this outcome is still a work in progress, but initial indications 
are positive.  Such evaluation is harder because it entails evaluating different cohorts of students 
studying under different curricular models.  Unfortunately, data was not available for the period 
prior to the introduction of the new course for EE students, but it is hoped to perform a more 



rigorous comparative assessment for CPE students who will take the new course for the first time 
in 2022.  The outcome has two components, one attitudinal (motivation) and one more practical 
(learning effectiveness).  The intention is to work with the Education department to develop a 
comparative attitudinal survey to assess the first component, and to develop a common practical 
assessment test given to both cohorts of students to assess the second.  For the present, formal 
evaluation of this outcome remains limited, but subjective course surveys were administered and 
scored on a scale 1-5, (with 5 being the highest) as further reported below. 
 
 
Summary of results 
The effectiveness of the new lab sequence was measured as outlined in the previous section.  A 
total of 36 students took the course.  The majority were sophomore EE students, but the list 
included five senior ME students, one junior CPE student and two undeclared majors.  One 
student withdrew for personal reasons, but the remainder completed 99% of the assigned work.  
Aggregated scores (expressed as percentages) are shown in Table 3.  The results demonstrate 
that Outcomes #1, #2, #3 have been met for the large majority (>90%) of the class with 
significant portions excelling in the ‘Mastered’ category.   
 
As discussed above, the assessment of Outcome #4 is still a work in progress, but initial 
subjective / survey results are very positive (Table 3).  The mean student evaluation obtained for 
the ‘Overall value of this course’ was 4.8 on the 1-5 scale.  Despite the ambitious scope of the 
work students reported that they ‘Kept up with the assigned work’, again with a mean score of 
4.8.  Students also noted that the course ‘Encouraged student participation’ (mean 4.9) and was 
‘Intellectually stimulating’ (mean 4.5).   These figures were in the top quartile for the 
department.  There were relatively few free-style written survey comments, but these included 
“great job creating these labs”, “Cool labs that are fun to do”, “Fun lab, interesting”, and “I 
enjoyed being able to apply what we had learned in lecture to make the Photon come to life”.  
Although these comments are more qualitative and subjective, it is clear that the course was 
effective in engaging student interest as well as achieving the positive outcomes outlined above. 
 
Outcome Limited Satisfactory Mastered 
Outcome #1 (formative) 9% 31% 60% 
Outcome #1 (summative) 9% 43% 48% 
Outcome #3 9% 54% 37% 
    
Outcome #4   Score <= 3  Score = 4 Score = 5 
- Overall value of course 8% 0 92% 
- Kept up with assigned work 0 23% 77% 
- Encouraged student participation 0 8% 92% 
- Intellectually stimulating 8% 38% 54% 

 
Table 3:  Summary of assessment results 

 
Conclusions 
The design and implementation of a new sophomore-level course in embedded systems and IOT 
has been described, based on a new low-cost, portable, and Wi-Fi-enabled ARM device.  The 



hardware kit proved to be robust and flexible, allowing students to explore analog and digital 
I/O, output pulse modulation schemes, serial protocols, cloud communications, and finite state 
machine designs.  The course was well received, and together both completion and survey data 
suggest that it succeeded in engaging student interest and learning in embedded systems and 
IOT. 
 
In future iterations of the course it is hoped to provide more application projects that build upon 
the current set of exercises.  For example, students already use feedback from an RLS sensor to 
control dc motor speed with an external transistor or H-bridge.  A new project is currently being 
developed where students adapt this program to use feedback from an RLS sensor to suspend a 
metallic sphere beneath an electromagnet, regulating the coil current using an external power 
transistor.  Another project adds encoders to the mobile robot motors and then uses encoder-
driven interrupts to monitor and control motor speed and angular displacements much more 
accurately than is possible with the current configuration.  Yet another project uses a software 
finite state machine to control a set of traffic lights.  It would also be interesting to add an I2C or 
SPI-driven 4-digit display to the system, and to construct a digital clock / stopwatch / alarm 
application that can be synced to user’s calendars or gps time services.  The possibilities go on.  
Ultimately, the kit proposed in this paper constitutes a very powerful and flexible platform, and 
one that can help unleash student imagination in the embedded systems & IOT arena. 
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