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Abstract— The use of multimodal data such as patient files and 

images is crucial for diagnosis in healthcare. In practice, we don’t 

always have all patient history or images, and sometimes lab 

reports may be missing. This research suggests a Missing-

Modality Resilient Model derived from causal inference and deep 

learning methodologies to counter this challenge by reconstructing 

missing modalities while maintaining reliable diagnosis. Using 

Kaggle chexpert X-ray data [6], CheXpert Plus Dataset [7], and 

composite synthetic patient history, models are trained and tested 

for large-scale and multimodal data. The provided model employs 

modality-specific encoders, CNN for X-rays and other tabular 

data for medical history. Additionally, the causal graph is designed 

with the help of the domain expert and statistical survey. This 

DAG represents the cause-effect structure of the X-ray features 

with patient attributes (age, smoking history, and so on). A 

modality reconstruction module can use Structural Causal Models 

(SCMs) and Variational Autoencoders (VAEs) to predict the 

missing data, so the features are realistic. These available and 

reconstructed modalities are combined and projected into a joint 

latent space for pneumonia diagnosis. Consistently, the 

performance loss is significantly outweighed by the proposed 

model when one or more modalities are absent, thus overcoming 

baseline methods. Furthermore, it brings improvements to the 

interpretability aspect through the representation of clinical 

variables’ interactions using the causal inference framework. This 

work advances a corpus of missing data management for clinical 

applications by incorporating causal learning into flexible missing 

modality recovery to enhance diagnostic reliability across multiple 

modalities. This leaves a place for future work where the model 

could be employed for other illnesses apart from COPD. The 

performance of the model could be checked on more extensive 

data sets, and the model could be tested for its versatility when 

used in different healthcare facility settings. 

Keywords—Missing-Modality, Causal Inference, CheXpert, 

Pneumonia Detection, Deep Learning, Multimodal Data, 

Healthcare AI, Variational Autoencoders, Bayesian Networks. 

I. INTRODUCTION

A deep-learning framework for pneumonia identification 
utilizing chest X-rays (CXRs) is the focus of the present study, 
with the end goal of eventually integrating causal inference to 
remedy the situation of missing patient data. The current work 
establishes a baseline convolutional neural network (CNN) for 
classifying pneumonia with a recorded validation accuracy of 
87.92% and a loss of 0.2767 over three epochs of training. 
Therefore, while the model shows promise for diagnosis, the 
wider research vision, as already described in the proposal, will 
try to factor in the missing modalities using causal graphs and 
multilayer reconstruction in two different models and do the 
comparison. Consequently, this report tries to evaluate the 
performance level of the baseline model, compare it with the 
proposed framework, and highlight the gaps that need to be 
spanned for clinical usability. 

II. METHODOLOGY

The research manuscripts propose a framework that 
integrates a combination of independent modality encoders for 
CXRs and medical history with causal graph integration. 
Processing X-rays is a convolutional neural network, while 
clinical variables (e.g., smoking status and age) are processed 
by a tabular encoder. Structural Causal Models (SCMs) 
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graphically integrate these modalities through Directed Acyclic 
Graphs (DAGs), which enable the reconstruction of missing 
data using variational autoencoders (VAEs). The code as it now 
stands implements only the CNN part: a sequential model with 
three convolutional layers, filtering 32, 64, and 128, max-
pooling, and dense layers of 128 units with 50% dropout. The 
model was trained on Kaggle's "chestxraydataset," utilizing 
Adam optimization (learning rate=0.001) and binary cross-
entropy loss. The most salient limitations are the absence of 
medical history data, causal graphs, and reconstruction modules 
for handling missing modalities. In addition, we have used 
another model (Model 2) for comparison. The model 2 uses 
CNNs for image analysis and Bayesian Networks (BNs) with 
Directed Acyclic Graphs (DAGs) for causal inference and 
trained on stanford “CheXpert Plus” dataset. His heart is 
monitored through a structural causal framework, forecasting 
the absence of certain values. The future projects will use 
Variational Autoencoders (VAEs) to recollect the missed 
pieces of information, in addition to bettering the overall 
reliability. 

Fig. 1. Deep Learning Framework for Pneumonia Detection 

Three convolutional layers are used in the CNN architecture for 
feature extraction.  Each layer employs 32, 64, and 128 filters 
for hierarchical learning. Max-pooling layers reduce 
dimensionality and computational load.  Dropout (50%) 
ensures that overfitting is prevented and generalization is 
improved. Fully connected layers yield the output for binary 
classification. 

Fig. 2. Visual representation of the Causal DAG 

In Fig. 2 tabular features like age and sex influence recent_bmi whereas 

recent_bmi, cough, and smoking_history influence pneumonia diagnosis. 

Fig. 3. Structure of VAE, Bayesian Network, and deep learning model 

Chosen Datasets: 

This data collection mostly comprises of chest X-ray pictures 

from normal and pneumonia patients. The total number of chest 

X-ray pictures is 5840. It has two folders: train and test. Both

of these have two subfolders designated NORMAL and

PNEUMONIA. The goal for the generation of this dataset was

to train a convolutional neural network using this dataset to

identify pneumonia. An instance of the dataset material is

shown below.

Fig. 4. Dataset Snapshot 

An extended version of CheXpert, incorporating additional 
patient history (e.g., age, smoking status, BMI) featuring 
unique pairs of radiology reports and chest X-rays across 
187,711 studies from 64,725 patients [7].  

III. IMPLEMENTATION & RESULTS

Fig. 5. X-ray of a pneumonia-affected lung and a healthy lung 

In this study, a dataset with 5863 CXRs (5232 for training 
and 631 for testing) was used. Optimized using Adam with a 
learning rate of 0.001 for model training. Binary cross-entropy 
loss function was employed for classification purposes. Trained 
across 10 epochs with performance improvements. All CXRs 
were normalized to an image size of 150 x 150 pixels and 
augmented by rotation (±20°), shifting (+20%, -20%), shearing 
(0.2), and horizontal flips. The training metrics reflected 
continuous improvement, illustrated by a validation accuracy of 
74.00%, and at epoch 1, it was raised to 87.92% at epoch 3, 
with loss value reduced from 0.5330 to 0.2767. Peak validation 



accuracy was 88.89% (epoch 9) but indicates the scope for 
further training. There is a small difference between training 
(89.77% accurate) and validation performance (87.92%), 
suggesting that dropout regularizes the architecture well; this, 
however, confines the model to only CXRs and is, hence, far 
from meeting the multimodal objective in research. That, 
indeed, is the evaluation of the model.  

Fig. 6. Training and Validation Accuracy and Loss Curves for Model 1 

The graph above, correctly illustrates the training and 

validation accuracy/loss trends for a pneumonia detection 

model. It helps in the evaluation of model performance, 

showing improvements, convergence, or overfitting during 

training. 

Model 2 was trained for three epochs with the following loss 
values: 

● Epoch 1, Loss: 0.3305

● Epoch 2, Loss: 0.1943

● Epoch 3, Loss: 0.0873

The accuracy in the final validation set was very high, where 
the model reached a peak rate of 88.00%, and the F1-score was 
0.9048, which was enough for direct diagnostics. Combining 
the history of the patient with the X-ray images, the hybrid 
model assures robustness in the absence of such modalities. 

Fig. 7. Training and Validation Accuracy and Loss Curves for model 2. 

Fig. 8. X-ray of a pneumonia-affected lung and a healthy lung (Sample 

images) for model 2. 

To verify model 2, three test X-ray images were considered. 
One correct observation followed the classification of both 
normal and pneumonia-positive cases (first two from the above 
inserted images), confirming its capacity to serve real patients 
adequately. The pneumonia one, which was detected correctly, 
also highly supports the model’s capability in distinguishing the 
normal lungs from the affected ones. You can see the output 
from the detection test in the screenshot below. 

Fig. 9. Model 2 Test Output 

IV. CRITICAL ANALYSIS

The performance of the baseline CNN is indeed 

competitive and exceeds random guessing (50%) by 37.92%; 

however, it is not up to the causal inference objectives of the 

proposal. The coded procedures are confirmed by 

preprocessing (resizing, normalization) and model saving 

(Keras format, avoiding HDF5 warnings). However, in model 

1 key gaps persist, such as no causal graphs linking clinical 

variables (e.g., smoking → lung abnormalities), medical 

history data being absent, and the evaluation lacking F1-scores 

and reconstruction metrics (MAE/SSIM). The "composite 

synthetic patient history," which aims to imitate absent 

variables through VAEs, has not been implemented, so 

resilience testing is limited [4]. Disparities in datasets—1,973 

training images in results versus 5,232 in code—also indicate 

that preprocessing oversights need to be fixed. The proposed 

framework model 2 was able to address key limitations of 

model 1 like inability to handle missing data and lack of 

combing the incomplete tabular and image data. Whatever it 

has to do with the accuracy and perception of the hybrid 

model, the impact of the expert's decisions on it has to be 

made. The company refinements required to increase 

robustness in diverse clinical environments are promising. 

Model 2 exhibits Greater accuracy, manages incomplete data, 



resilient. In model 2 ResNet18's advanced feature extraction 

surpasses that of a basic CNN. Moreover, Bayesian reasoning 

provides clinically interpretable predictions. Variational 

Autoencoder fills in the gaps of incomplete records. DAG + 

Bayesian models aid in avoiding overfitting solely based on 

image data. Finally, considering all these Model 2 is more 

reliable with the problem. 

V. FUTURE DIRECTIONS

Future advancements will focus on refining VAE and BN 

components with expert input, and testing on larger datasets 

like NIH Chest X-ray and MIMIC-CXR datasets to form the 

core improvement measures. Assessment metrics such as F1 

score and SSIM will provide better insights into the accuracy of 

diagnosis and quality of reconstruction [5]. Further deployment 

across multiple healthcare settings will contribute to the real-

world performance assessment. Real-world tests maintained by 

other datasets of patients will improve the trustworthiness of 

clinical applications. 

VI. CONCLUSION

Model 1 (baseline CNN) proves to be quite a solid 

foundation for pneumonia detection (with 87.92% validation 

accuracy), but it does not address any causal components that 

are needed in a real-world clinical setting. This work 

emphasizes doing interdisciplinary work toward clinically 

relevant AI systems in line with the vision of resilient, 

multimodal diagnostics from the proposal. The pneumonia 

diagnosis process is enhanced using a hybrid deep learning 

technique (Model 2) by combining convolutional neural 

networks and causal inference. This method reduces reliance 

on complete patient data and thus provides a more robust and 

interpretable AI-based healthcare solution. Real-case scenarios 

were used to validate the model's ability to detect pneumonia 

efficiently. Future work will proceed with improving data loss 

concealment and extending dataset validation for clinical 

applicability and robustness in a hospital environment. 
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