

A Library of Hands-On Nanoscience Activities Appropriate for Grade 10 through 14 Students

Deb Newberry, Nano-Link Regional Center for Nanotechnology Education

A Library of Hands-On Nanoscience Activities Appropriate for Grade 10 through 14 Students

Deb Newberry, Nano-Link Regional Center for Nanotechnology Education

Abstract:

Nano-Link, the Regional Center for Nanotechnology Education, has created a library of over 20 activities developed to teach nanotechnology concepts to upper level students. The activities not only provide an inexpensive, tactile approach to understanding nanoscience concepts but also include aspects of practical applications, correlation to traditional science and engineering disciplines and avenues for critical thinking and problem based learning. Each topical activity has several versions that allow tailoring of the activity and content to the education level of the students. Many of these modules have been used for several years in high school and college classes with positive results and improvement in student understanding and interest in science.

Introduction:

The Advanced Technology Education (ATE) Program within the National Science Foundation places significant emphasis on the distribution of educational content within both high school and college level institutions. However, in many instances this is a challenging aspect of the successful implementation of an NSF ATE project. In 2009 the ATE started a project to study and improve the dissemination of created educational content. The project was named Synergy and Nano-Link along with eleven other ATE Centers participated in the Synergy project.

The project required each participating center to select one aspect of their dissemination activity with the intent of evaluating, dissecting, improving and measuring that particular dissemination activity. Nano-Link selected the dissemination of our nanoscience based educational content to high school educators as the focus topic.

The Process:

The logic diagram, which was one of the first steps in the evaluation and improvement process for the Synergy project effort, is shown in Figure 1. The logic diagram follows the progression of steps from input through long term results. Essentially, the goal of Nano-Link is to enthuse young (pre college) students about nanoscience in particular and science, technology, engineering and math (STEM) in general. In the early years of Nano-Link, dissemination efforts focused predominantly on the students, with classroom visits, summer camps and various activities used to reach students with information about nanoscience and STEM concepts and careers. This effort was moderately successful with hundreds of students reached and very positive and enthusiastic assessments. However, greater levels of outreach and greater impact were desired.

Professional development for educators was also a part of the Nano-Link outreach and dissemination. Again, although the efforts were successful in helping educators understand nanoscale concepts, the numbers were lower than desired and the number of educators that actually integrated nanoscience into classes was very small. Initial enthusiasm for integration was high, however when the time came for actual implementation the educators were hesitant. As part of the Synergy effort, the Nano-Link team acknowledged the strength of the influence of educators on students' perception of science and science careers and therefore decided to focus the improvement efforts on the educators. This emphasis is shown in the logic diagram. One of the first activities undertaken in the Nano-Link Synergy effort was to survey educators (high school and college) to determine what they wanted in education content, which aspects of nanoscience was of greatest interest to them and what it would take for them to integrate new content into their classes. During a twelve month period over 250 educators were surveyed. The survey, results and implications are covered elsewhere, however the overwhelming response was that educators wanted hands-on, fun, activities that conveyed basic nanoscale concepts that would fit into one or a few class periods. Of lesser importance were lecture presentation materials, test questions, a great deal of technical rigor and stipends. Nano-Link also changed the approach toward professional development by shortening educator workshop duration, focusing on the activities, providing support for correlation with science concepts and providing all of the technical detail in on-line lectures (optional for educators).

Nano-Link (NL) Logic Model

Goal: Develop 2-4 nano-based modules that are teacher demanded, vetted, and promoted in K-12 STEM courses. *Impact*: Appreciation and application of nano within STEM courses and careers.

Figure 1: Synergy Project logic model.

The Modules:

Based on the surveys as well as several educator focus groups and one on one interviews, the modular concept for the educational content was created, where a module is a topically based education unit which includes a student activity as a focal point that can be completed in one to four class periods. The table of contents for a module is shown in Figure 2. The emphasis for the modules is in the hands-on activities, which are a critical element for the educators and students. Twenty modules have been developed or are in process. These modules are shown in Table 1. For the eight modules that are complete and have been in use in classrooms Nano-Link is continuing to assess the critical elements for a module and the table of contents may be modified. For example, the supplementary videos on the Nano-Link website are used by 85% of the educators and/or students, but the detailed technical resources are used much less often (20%). Items are also being added, based on educator, student and industry input. These items include problem based learning units, critical thinking problems or experiments and team based activities. Table 1 includes the traditional science and nanoscale concepts covered in the module, the potential applications and careers (as part of the module discussion) and the current status of each module.

Figure 2: Typical module table of contents

Module	Focus	Traditional	Nano Concept	Application	Status
Effernessent Tablata	Surface area to volume	Sciences	Depativity and	Detterios	Complete and
Ellervescent Tablets	Surface area to volume	Algebra and	Reactivity and	Batteries,	Complete and
	ratio	graphing	surface area	catalytic	distributed
M i G l		C1	D' 't' f	converters	
Magic Sand	Supernydrophobicity	Dhavai an	Priorities of	water	Complete and
		Physics	Forces and	purification	distributed
	0.10.4	DI '	Interactions		
Crystals Part I	Self Assembly	Physics	Material	Critical thinking	Complete and
		Chemistry	structure		distributed
Crystals Part 2	Unit Cells	Material	Material	Material structure	In process
		Science	structure		(3/13)
Cross-Link Polymer	Fluid and polymer	Chemistry	Priorities of	Drug delivery	Complete and
	interactions	Biology	Forces and		distributed
			Interactions		
Ring-Polymer	Fluid and polymer	Chemistry	Priorities of	Absorbent	Complete and
	interactions		Forces and	material	distributed
			Interactions		
Magic Fish	Scientific Method	General	General	Design of	Complete and
				experiments	distributed
Sunscreen	Nano particles and light	Physics	Size dependent	Sunscreen	In beta test
	interaction		interactions		
Thin Films	Interaction with light	Physics	Size dependent	Decorative	Complete and
	_	-	interactions	products	distributed
Memory Metals	Crystalline structure of	Physics	Nanoscale	Springs	Distributed
_	metals	Material	properties		
		Science			
Light Emitting Diodes	Energy band structure	Physics	Quantum at the	Energy efficient	In beta test
Part 1	Energy and wavelength	-	nanoscale	lighting	(2/13)
Light Emitting Diodes	Device operation	Physics	Quantum at the	Solid state	In process
Part 2	-	-	nanoscale		(3/13)
What's wrong with	Atomic Structure	Physics	Atomic	Geckos and	In beta test
this picture?		-	structure	Jumping spiders	(2/13)
Water and Salt	Dissolving process	Chemistry	Sense of Scale	Supersaturated	In beta test
	Temperature dependence	2		solutions	(2/13)
Micelles: Biology and	Non uniform charge	Biology	Hydrophobic	Detergent	In process
Soap	distribution Non		and	0	(3/13)
1 I			hydrophilic		
Protein Folding	Non uniform charge	Biology	Molecular	Drug interactions	In process
1 iouni i orang	distribution	Diology	structure	Drug interactions	(3/13)
Micro Fluidics	Mixing fluids (turbulent	Physics	Phenomena at	Lab on a Chip	In beta test
intero i fututes	and lamiar plow)	Material	the nanoscale	Luo on a omp	(2/13)
		science	the nanoscare		(2/13)
Carbon Nanotubes	Material Properties -	Material	Molecular	Automobiles	In process
Part 1	Strength	Science	structures	Automobiles	(3/13)
Diffraction Gratings	Optics as sensors	Physics	Size dependent	Sensors	In process
Dimaction Gratings	Optics as sensors	FILYSICS	interactions	Sensors	(5/13)
Nanopartialas in	Diffusion	Chamister	Molecular	Targeted systems	(J/13)
Salution	Diffusion	Chemistry	inters still ar	rargeted systems	III process
Solution			interactions		(3/13)

Table 1. Current modules

Modification:

The educational content is designed to be adaptable to multiple ages and educational levels. The chart in Figure 3 depicts some of the variations that are possible for the cross linked and ring polymer modules. For the lowest grade levels the activities can be used to show the relationship between atomic structure and physical properties. For example, the cross linked polymer, when dry, is course and room temperature. When water is added to the polymer, it expands, feels very soft and cool to the touch. By adding the water to the polymer the atomic structure is changed and the physical properties are {obviously} changed. For more advanced students, variations in temperature and use of different fluids can lead to an investigation of molecular structure, chemical bonds, bond strength and temperature dependence. The variations in the matrix serve as a starting point for educators which can lead to multiple course and class specific variations.

Category	Middle School	High School	College
Materials	Cross-Linked polymer powder Water Petri Dishes Transfer pipettes or small flexible plastic cups Food coloring (optional)	+ Different liquids (oil, salt water, soap, glycerin, alcohol etc.) Access to hot and cold water	+ Stopwatches Video camera Beakers, scales Raman Spectrometer SEM
Concept(s)	By adding water to the XL polymer the arrangement of atoms is changed therefore changing the material properties	+ Interaction is dependent upon the type of liquid and also the temperature of the liquid	+ Use liquid and temperature variations to define inequality equations for the various forces and interactions (cohesive, adhesive, vibrational etc.
Variations	None	+ Molecular structure and attributes of the liquid Temperature dependency	+ Time of interaction, amount of dry and liquid materials Different concentrations of liquids i.e. salt and water, water and soap
Questions	Can you think of other examples where adding one material to another changes the properties? Can you think of possible applications for a material such as the cross-linked polymer?	+ What are the forces and interactions between the atoms/mers in the polymer and the molecules of the liquid? Does the molecular structure of the liquid impact the reaction? If so, how?	+ Using the Raman, which chemical bonds were broken with different liquids Define relative strengths of the different bonds Define the charge distribution of the liquid molecules and the influence on the interaction with the cross linked polymers

Figure 3. Variations for cross linked and ring polymer modules.

Results:

The modular approach employed by Nano-Link as a result of the work performed during the Synergy project has resulted in 20 modularized topics. To date, 8 of the modules have been widely disseminated to over 50 high school and college educators in 15 states. These educators have used the modules in classes with over 5000 students. This is a significant improvement over the previous efforts of Nano-Link and was realized by working with the educators and intended audience. Complete, topically based educational modules were created that met their needs and student expectations.