
Paper ID #5740

A Low-Cost Programmable Arbitrary Function Generator for Educational
Environment

Mr. Mani Dargahi Fadaei, Azad University

Mani Dargahi Fadaei received B.S. in electrical engineering from Azad University of Kermanshah, Kur-
distan in 2010. Currently, he is pursuing M.S. in electrical engineering in Azad university of Iran, Tehran
Markazi branch. His research interests include wireless network, ultra low power and ultra low voltage
amplifier design.

c©American Society for Engineering Education, 2013

P
age 23.20.1

A Low-Cost Programmable Arbitrary Function

Generator for Educational Environment

Abstract

This paper presents the design, implementation, and operation of a low-cost programmable

arbitrary function generator intended for use as a plug-in board in a personal computer. Since a

digital computer is used, capabilities such as programmability and signal recording are available

with this system. Therefore, this instrument can generate any function of time that can be

represented mathematically. The ability to generate arbitrary waveforms makes this instrument

more versatile that an ordinary function generator that can produce only a few different

waveforms. This design offers a significant advantage to educators in underdeveloped countries

with limited resources to obtain a low-cost instrument that can be used in undergraduate

laboratories where more expensive commercially arbitrary function generators are not available.

One interesting application of this instrument is the synthesis of sound. If the equation for a

particular sound is known, the sound can be produced when this function generator is connected

to an audio amplifier and a speaker.

Introduction

This paper describes the design, implementation and operation of programmable function

generator intended for use with a personal computer (PC). Because a digital computer is used,

capabilities such a programmability and signal recording are available in this system. The ability

to generate arbitrary waveforms makes this instrument more versatile than an ordinary function

generator that can produce only three or four different waveforms.

This design offers two significant advantages to educators: (1) it provides a low-cost

instrument that can be used in undergraduate laboratories where more expensive commercial

arbitrary function generators are not available; and (2) it is suitable for use as a student project.

One interesting application for this system is the synthesis of sound. If the equation for a

particular sound wave is known, that sound can be produced when this function generator is

connected to an audio amplifier and speaker.

Methodology

 The design of this waveform generator utilizes the theory of sampled-data systems.

Shannon’s sampling theorem states that a time-dependent function f(t) that is limited in

bandwidth to fm and sampled at a rate fs > 2fm can be completely reconstructed from its

samples
1
.The sampled waveform is a discrete time signal that possesses all of the frequency

components in the interval 0 < f < fm. However, additional frequency components that are

imposed by the sampling process appear in the interval f > (fs – fm), and these undesirable

components are separated from the original frequency by a bandwidth of fs - 2fm. If f(t) is

sampled at a rate less than 2fm samples per second, the undesirable components overlap the

P
age 23.20.2

original components in the frequency spectrum, and consequently f(t) cannot be recovered from

the original sampled signal. This phenomenon is known as aliasing. To reconstruct a function

that has been sampled at the rate fs > 2fm, the sampled signal must be directed through a low-pass

filter that has a cutoff frequency of fm. The magnitude plot of the low-pass filter response must

have a slope that is sufficiently steep in the cutoff region to reduce the magnitude of the lowest

undesirable frequency component fs - fm to an acceptable level.

 Utilizing this sampled-data scheme, a programmable arbitrary function generator was

designed to interface with a PC. This specific computer platform was chosen because it is very

common in both industrial and scientific environments
2
.

A flowchart of the operation of this

function generator is shown in figure 1. An arbitrary function is defined; band-limited is

necessary, then sampled according to Shannon’s sampling theorem entirely in software. The

values of these samples are then stored in a data file. These stored samples are then directed to an

output device at the rate that they were sampled. This device reconstructs the discrete time-

sampled signal and processes it through low-pass filters to recover and display a close

approximation of the original defined function.

Figure 1. Flowchart of arbitrary function generator

P
age 23.20.3

Software Components

 This programmable function generator was designed to generate waveforms in the audio

spectrum. Therefore, defined functions are limited in bandwidth to 18 kHz and are sampled at a

rate of 50,000 samples/sec, resulting in a guard bandwidth of 14 kHz. Reconstruction of the

sampled signal is accomplished using a four-pole low-pass filer with a slope of 80 dB/decade, as

shown in figure 2, that attenuates the lowest undesirable frequency component by approximately

20 dB. The sampling rate is low enough to satisfy the speed require of the assembly language

program used to generate the sample.

Figure 2. Bode Plots for Gaussian transitional and Butterworth low-pass filters

The arbitrary function generator operates in the following sequence:

1. First, the generating function is defined in a program called TAMPLATE. If is

anticipated that the desire function will have frequency components above in the

bandwidth limit of 18kHz, and thus will be subject to the effects of aliasing, the function

can be defined in the alternate program called LPFTPLT.

2a. TAMPLATE evaluates the function at time intervals that are small enough to satisfy

Shannon’s sampling theorem. The decimal value of each sample is quantized, encoded

into an 8-bit value, and stored in a data file.

2b. LPFTPLT applies an anti-aliasing low-pass filter simulation to the function. The

decimal values of these filtered samples are quantized into 8-bit value, and stored in a

data file.

3. The stored data file contains amplitude samples for the defined function. The utility

program GRAPH uses this data to display the sampled function on the PC monitor.

4. The function is then generated using a program called FE. This program prompts the

user for the name of the data file that contains the sampled values and the number of P
age 23.20.4

times to repeat the waveform. The program then uses this information to execute the

assembly language program ASSEM.EXE.

5. ASSEM.EXE accesses the 8-bit values stored in the data file and directs them to the

hardware device used to generate the defined function.

6. This hardware device constructs a discrete time-sampled (SAM) signal from these 8-bit

values. This sampled signal is then sent through a transitional low-pass filter to generate

a continuous time signal that is a close approximation to the original defined function.

The program LPFTPLT is not only used to define, sampled, quantize, and store desired

function, but also to limit the bandwidth of the function. This program also solve the necessary

difference equations used to simulate a low-pass filter with the transfer function of

 =

 (1)

Where an = filter parameters.

 In the LPFTPLT program, the user must define a number of variables: (1) the transfer

function parameters an, where n = 0, …, 3, (2) the desired waveform function. (3) the name of

the data file, (4) the integration step size h, and (5) the sampling period which is typically

20μs for a sampling rate of 50,000 samples/sec. Note that the value must be a multiple of the

value of h.

 For the accurate and stable simulation, the value of h must be chosen so the product of

λmh lies within the relatively stable region of numerical integration, where λmh is the magnitude

of the largest pole of the transfer function
3,4

. The stable region of Euler’s numerical integration

routine is a unit circle that is centered at (-1 + j0) on the s-plane. Therefore, to ensure accurate

simulation when using Euler’s one-step integration routine, h must be less than .

Furthermore, since transient behavior of a low-pass filter can include overshoot, a scaling factor

is needed to ensure that the output of the filter simulation lies within the allowable range of -1 to

+1.

 Difference equations are used in the LPFTPLT program to simulate the transfer function of

equation (1). The dynamic behavior of this low-pass filter can be described by the following state

variable equations:

 ̇ =

 ̇ =

 ̇ =

 ̇ =

 , (2)

P
age 23.20.5

Where

 ̇ = state variables

 = input

 = filter parameters

 = function after processing by the low-pass filter.

Using Euler’s one-step explicit integrator, which is defined as

 ̇ (3)

The state variables given in equation (2) are transformed into the difference equations

 ()]

 (4)

that are programmed in LPFTPLT.

 Once the function has been sampled and stored into a data file, the program GRAPH can be

used to display the resulting waveform. This utility program can accept data files that were

created by either TEMPLATE or LPFTPLT
5
. The program allows the user to scale both the

horizontal and vertical axes to magnify or reduce any portion of the display in a manner similar

to the vertical amplifier and sweep speed adjustments available on an oscilloscope. To display

the intended waveform, the user must enter the name of the data file, the upper and lower limits

of the horizontal and vertical axes, and optional graph title. The graph of the function is then

display on the monitor, and the user can print this graph with the print-screen key.

 Functions can be also be generated from a data file using a program called GEN.EXE. This

program prompts the user for the name of the data file and the number of waveform repetitions,

then encodes the repetition number into a 16-bit value and stores it to a file called GEN.EXE,

then copies the contents of the data file to a file called DATA and executes the output module

ASSEM.EXE.

 The output module ASSEM.EXE loads both the 16-bit repetition value found in the REPSFILE

file and 8-bit function amplitude value found in the DATA file into RAM. The program display a

message indicating that all data has been loaded, then output this data to the PC’s hardware

interface. When ASSEM.EXE detects the data file’s end-of-file marker, it either repeats the

process for the selected number or repetitions or terminates. ASSEM.EXE was written in

Assembly Language
6,7

, the flowchart for the program shown in figure 3.

P
age 23.20.6

Figure 3. Flowchart of ASSEM.EXE output program

Hardware Components

 The block and schematic diagrams of the hardware used to reconstruct functions are shown in

figures 4 and 5, respectively. All bus lines in the PC are buffered using 74LS244 tri-state buffers

for the address and strobe lines, and 74LS245 bi-directional buffers for the data lines
8
. A

74LS688 8-bit comparator and three 2-input OR gates are used to decode ten address lines and

two strobe lines. When the address lines correspond to 0300 (hex) and the IOW and LEN strobe

lines are active, the decoding circuit generates a clock pulse (active low) signifying that the data

on these data lines is valid. This pulse clocks the byte-wide D flip-flop inside and AD-558

P
age 23.20.7

digital-to-analog converter (DAC), capturing successive bytes of data from data lines. The

discrete time-sampled signal is obtained from the output of this DAC. This signal is filtered to

recover a continuous signal using a four-pole, Gaussian-to-12-dB, transitional low-pass filter

with cutoff frequency of 18 kHz
9
 and parameters

a3 = 417.6 x 10
3
, a2 = 106.3×10

9
, a1 = 13.14×10

15
, and a0 = 706.3×10

18
.

Figure 4. Block diagram of hardware interface

 Figure 5. Schematic diagram of hardware interface

P
age 23.20.8

 When selecting a filter for this type of application, both magnitude and phase characteristics

must be carefully considered. The low-pass filter must sufficiently attenuate all of the harmonics

imposed by the sampling process without introducing nonlinear group delay in the pass-band of

the function. The obscure Gaussian transitional filter was chosen to meet these requirements.

Comparison of transitional and Butterworth filters can be seen in figure 2.

 The effects of nonlinear group delay should be considered when designing the low-pass filter.

If the phase shift of the filter is linear with frequency, the propagation delay imposed by the filter

is identical for all frequencies. This phenomenon is known as uniform group delay. A graph of

filter’s phase response with respect to a linear frequency axis may be helpful when estimating the

group delay of the filter. Note that a Gaussian-to-12-dB transitional filter exhibits nearly linear

phase shift while a Butterworth filter exhibits exceptional nonlinear phase shift throughout the

pass-band.

 To illustrate the effects of nonlinear phase shift, the propagation delay of the first five

harmonics of a 2-kHz square wave imposed by both a Butterworth filter and a Gaussian filter is

giving in table 1. When the period and phase shift of the waveform are known, the propagation

delay can be calculated using the equation

 (5)

 Where T0 is the period and is the phase shift.

Table 1. Propagation Delay of First Five Harmonics of 2-kHz Square Wave through

Butterworth and Gaussian Transitional Filters

 Butterworth Transitional

Frequency (kHz) Phase (degrees) Prop. Delay (μs) Phase (degrees) Prop. Delay (μs)

2 -16 22.2 -13 18.1

6 -51 23.6 -40 18.5

10 -87 24.2 -68 18.8

14 -130 25.0 -94 18.6

18 -180 27.0 -119 18.4

 As expected, the nonlinear phase of the Butterworth filter causes an increase in propagation

time for each of successive harmonics, ranging from 22 to 27µs through the ninth harmonic.

These large variations in propagation delay cause ringing in the square wave output. In

comparison, the linear phase response of the Gaussian transitional filter exhibits relatively small

deviation in propagation time, or uniform group delay, for these same harmonics. The trade-off

for the linear phase response of the transitional filter is a roll-off in magnitude response that is

less steep in the 3-dB to 12-dB region than of the Butterworth filter.

P
age 23.20.9

 Finally, a differential amplifier is used to adjust the direct current (DC) offset and swing of the

function generator output. Potentiometers are used to set the DC offset to 0 volts and swing to 2

volts peak-to-peak.

Experimental Results

 Function Generation and Analysis

 The function generator described in this paper was used to produce basic signal such as

sinusoidal, triangular, square, and trapezoidal waveforms, as well as to produce more

complicated signals such as double sideband, suppressed carrier (DSBSC) and amplitude

modulated (AM) waveforms. All of these signals were displayed in time and analyzed in the

frequency domain using an oscilloscope and a spectrum analyzer, respectively.

 Frequency domain analysis of the DSBSC and AM signals provided an interesting application

of the commonly used trigonometric identity

 cos(α)cos(β) = [1/2][cos(α+ β) + cos(α-β)]. (6)

To demonstrate this application, the function generator was first programmed to generate an AM

signal

 fAM(t) = [1 + cos(ωmt)] cos(ωc t).

Where ωm is the frequency of the modulating signal ωc is the frequency of the carrier signal. It

can be shown from equation (6) that the frequency spectrum of this AM signal has a carrier

frequency with a unity magnitude and two one-half amplitude sidebands with frequencies of

ω = ωc ± ωm.

 Next the function generator was programmed to generate a DSBSC signal

 = cos(ωmt) cos(ωct). (7)

Equation (6) indicates that the frequency spectrum of this DSBSC signal does not include a

carrier frequency and exhibits only two one-half amplitude sidebands with frequencies of

ω = ωc ± ωm.

 A carrier signal of 5 kHz and a modulating signal of 50 Hz were used for both the AM and

DSBSC signals. The anti-aliasing low-pass filter simulation template was not used in this

demonstration because equations (6) and (7) indicate that these two signals do not contain

P
age 23.20.10

frequency components above the Nyquist limit. As expected, spectrum analysis revealed the

presence of the carrier frequency in the AM signal and the absence of the carrier frequency in the

DSBSC signal. Time domain plots of both signals are shown in figure 6.

Figure 6. Time domain plots of generated functions: (a) AM signal; (b) DSBSC signal.

 The programmable function generator was also used to study the effects of aliasing imposed by

the sampling process. A 15-kHz square wave was sampled both with and without the anti-

aliasing low-pass filter simulation found in the LPFTPL program. An aliasing frequency of 5

kHz was anticipated in the signal that was processed without the filter. The Fourier series for this

square wave is

 fsq(t) = A0 + A1cos(2π ×15000t) + A3cos(2 π x 45000t) + . . . (8)

For the 50-kHz square wave sampling signal, the Fourier series is

 fsm (t)= B0 + B1cos(2 π × 50000t) + B3cos(2 π × 150000t) + . . . (9)

The sampled signal is the product of equations (8) and (9), and one of the terms of this product is

[A3cos (2π ×45000t)][B1cos(2 π × 50000t)]. Expansion of this term using equation (6) yields

(1/2) A3B1[cos (2π ×5000t) + cos(2π × 95000t)]. The undesirable aliasing frequency of 5 kHz is

P
age 23.20.11

caused by third harmonic of the sampled function, which is the 45-kHz term in equation (8).

Limiting the bandwidth of the 15-kHz square wave to 18 kHz significantly attenuate this third

harmonic and reduce the magnitude of the aliasing term to a negligible amount.

 As expected, spectrum analysis revealed the 5-kHz aliasing frequency in the signal that was

generated without the anti-aliasing low-pass filter. However, this unwanted 5-kHz sinusoid was

attenuated considerably in the signal that was generated with the low-pass filter simulation.

Noise Generation

 All function generators produce some type of noise. Spectrum analysis of the signals that were

produced by this programmable arbitrary function generator reveals noise that is approximately

30 dB below the desired signals. Although this relatively small amount of noise is acceptable in

the reconstructed signal, the causes of this noise can be investigated.

 This particular function generator is susceptible to four different types of noise. First, aliasing

effects can cause noise in the sampled signal. Although this source of noise can be reduced

considerably by using anti-aliasing low-pass filters, the aliasing frequencies are still present in

the reconstructed signal. Higher-order low-pass filters can be utilized to reduce noise levels of

this type. Secondly, capacitive coupling from the nearby switching circuitry of the computer can

cause noise in the signal. This source of noise can be reduced by using shielded cable on all

analog leads in the system. A possible third source of noise is small variations in the time

intervals between each sample. For a sampling rate of 50 kHz, the time interval between samples

is 20 µs with a variation of approximately ±0.5 µs, which is less than ±3%. The fourth source of

noise can result from distortion caused by sampled signals with square-top pulses, which are

common in digital storage or communication systems, rather than signals that conform to natural

sampling, where the tops of the pulses “follow” the sampled signal. Further, note that the

digitization noise caused by the limited 8-bit resolution used in this system was negligible.

Conclusion

 This paper describes the design and operation of low-cost, programmable arbitrary function

generator suitable for use in undergraduate laboratories as an analytical tool or as a student

design project. Using custom software and a personal computer, this system can generate any

function of time that can be represented mathematically.

P
age 23.20.12

References

1. Schwartz, M. Information Transmission, Modulation, and Noise. San Francisco: McGraw-Hill Book

Company. 1959

2. Burr. K., and J. Brown. The Handbook of Personal Computer Instrumentation. New York: Simon and

Schuster. 1986.

3. Lambert, J. D., Computational Methods in Ordinary Differential Equations, New York: Wiley, 1973.

4. Rahrooh, A., and T. T. Hartley, “Adaptive Matrix Integration for Real-Time Simulation of Stiff Systems,”

IEEE Transaction on Industrial Electronics, 36, no.1 (February 1989): 18-24.

5. Mosher, F.E., and D. I. Schneider, Using turbo programming, San Francisco, Calif.: McGraw-Hill, 1988.

6. Vielleford, C. programming the 80286, San Francisco, Calif.: Sybex, Inc., 1987.

7. Norton, P. and J. Socha, Peter Norton’s Assembly Language Book for the PC, New York: Simon and

Schuster Inc., 1989.

8. Tomplins, W. J., and J. G. Webster, Interfacing Sensors to the IBM PC, Englewood Cliffs, N.J.: Prentice

Hall, 1988.

9. Williams, B. Electronic Filter Design Handbook, St. Louis: McGraw-Hill Book Company, 1981.

P
age 23.20.13

