

Abstract— With the large complex problems facing 21st

century researchers, such as Engineering Education, Retention,
Big Data, Cyber Security, Human, Social, Culture, Behavior
(HSCB), Urban Resilience and Sustainability, there is a need for
new research methodologies. The purpose of this research is the
development of a methodology to address and analyze large
complex systems. The System Development Life Cycle (SDLC) is
a standard methodology used to analyze and solve system
problems. However, current complex problems are requiring a
more in-depth approach to problem solving. To address this
problem, a modified version of the SDLC process is presented.
Also, a number of analysis technologies are presented. For
example, Object-Oriented Analysis (OOA) is used to develop a
static model of a problem (i.e., define the problem vocabulary).
To provide a generalized formal specification of a problem and
its solution, the Z-language based in set theory and predicate
calculus is being used. Also, to provide an approach that seeks to
validate a problem solution, the Alloy Language is presented.

Index Terms— Alloy Language, Object-Oriented Analysis
(OOA), Object-Oriented Models (OOM), Set Theory,
Specification Language, System Development Life Cycle (SDLC),
Z-language

I. INTRODUCTION
INCE the turn of the century there has been a large
increase in the number of complex problems. Many of the

current methodologies lack a complete solution to support
researchers. Understanding the lack of attention to detail, in
many instances, solving social problems can lead to partial
solutions that cannot keep up with the pace of demands
created by the problems. The purpose of this research is the
development a methodology to address and analyze large
complex social problems. This paper proposes a new
methodology as well as an integration of technologies and
tools. The System Development Life Cycle (SDLC) is being
modified to better analyze and solve software and system
problems. With the introduction of mixed analytical
techniques, object-oriented analysis and a generalized formal
model specification, a more robust problem analysis and
solution is being proposed.

II. SYSTEM DEVELOPMENT LIFE CYCLE
The System Development Life Cycle (SDLC) is a term used

by software and system engineers as a process for planning,
creating, testing and deploying a system. The fundamental

This work was submitted for review on 10 October 2014.
Shanelle Harris is an Industrial and System Engineering student at Morgan

State University, Baltimore, MD 21254, (email: shhar3@morgan.edu).
LeeRoy Bronner is now in the Industrial and System Engineering

Department at Morgan State University, Baltimore, MD 21254.

SDLC process is the waterfall Fig. 1. The waterfall is a
predictive model flow of sequential phases where the outputs
of stages are the inputs to the preceding stage [1]. As shown
in Fig. 1, the process flow is project selection, project
planning, analysis, design, implementation and maintenance.
The objective of the SDLC is to ensure a high quality product
is delivered while reducing inherent risk [2].

Project Selection

Project Planning

Analysis

Design

Implementation

Maintenance

Problem Input

Problem Solution

Fig. 1: Standard System Development Life Cycle

The planning phase determines the high levels of the project
used to generate goals. System analysis defines functions
based on redefining the project goals and analyzes the end
user information. During system design, the features and
operations of the system are described in detail.
Implementation is the execution of all the detailed planning
work followed by compiling and checking for errors and
interoperability. Lastly, maintenance follows the production
and distribution of the project and is for corrections, additions
and updates.
 The SDLC has proven to assist in many endeavors;
however, with the increasingly complex problems being faced
the limits of SDLC are exposed. It has been documented that
the maintenance phase can take up to 80 percent of a projects’
effort [1] [3]. The waterfall process lacks the flexibility,
customer involvement, and misalignment of customer’s
expectations. It assumes the customer is only involved in the
early phases and updates are not made throughout the entirety.
There is no place to change during implementation if the
scope has changed. This would cause a creep in the scope
leading to a solution that the user does not require. The lack
of flexibility and customer involvement culminate in
misalignment of customer’s expectations.

III. MODIFIED SYSTEM DEVELOPMENT LIFE CYCLE (MSDLC)
To address more complex problems, along with being able

to evaluate the validity of the solutions, a MSDLC process is
being proposed. This proposal addresses the normal SDLC

A Modified System Development Life Cycle for the Analysis of Complex Systems
Using the Formal Specification of Software for a Kitchen Cooking Application

Shanelle M. Harris, LeeRoy Bronner Ph.D., P.E.
Morgan State University

S

mailto:shhar3@morgan.edu

steps with a slight modification to the general flow replacing
project selection and planning with problem definition and the
use case model and maintenance with system evaluation. The
proposed MSDLC has added a Joint Application Development
(JAD) [4] session and continuous user involvement.
However, the major changes to the SDLC are introduced in
the analysis step. All of these topics are discussed in the
following sections.

A. Continuous User Involvement
One of the most important considerations in the solution of

large complex problems is the users of the solution. Unlike
the waterfall SDLC when users are met with in the project
selection and project planning phases this modified approach
has the user involved throughout each phase. It can be seen as
an exit criterion to move onto the next phase. This is used to
ensure the scope remains and to manage expectations. User
involvement cannot be over emphasized.

B. Joint Application Development (JAD) Session
As shown in Fig. 2, the Joint Application Development

(JAD) [4] session is the first step to be taken in the system
analysis. During this step the users and any stakeholder to the
project are engaged to discuss, define, and outline the problem
to be addressed. Typically, a facilitator is used to keep the
flow of discuss on topic. It is known that this is only an initial
problem description, since the problem definition, in most
instances, will change when more details are known. The
JAD session will produce a High Level System Diagram
(HLSD) as well as the initial problem definition in narrative.
The purpose of a HLSD is to graphically depict the problem
elements in a visual diagram for better understanding [4].

C. Use Case Models
Using the initial problem definition, the use case model is

developed. A use case model is a set of diagrams that define
the user’s requirements for the problem solution. The model
consists of actors, use cases, actor’s communication with use
cases, and use case scenarios. A use case is a sequence of
transactions by a system that produce a measured result seen
by the user and a sequence of actions a user must initiate in a
system to achieve a goal [5]. The primary purpose of the use
case model is to define the requirements of the system from
the user’s point of view. Using textual analysis the use case
scenario is used to select classes and their relationships to
produce class diagrams. This process completes the analysis
of the use case model.

D. System Analysis
The analysis process has three critical phases: 1) object-

oriented, 2) Z-Language, and 3) Alloy Language analyses.

Fig. 2: Modified System Development Life Cycle Diagram

1) Phase 1
Phase 1 consists of the object-oriented analysis (OOA) [5].

During the OOA phase, the entire problem is researched and
defined. By defined it is meant that the complete vocabulary
of the problem will be established. The vocabulary of the
problem includes the key entities that define the problem, their
attributes and behaviors. For example, a student entity might
be defined through its attributes that are germane to the
problem, namely, “name, student ID, social security number,
etc.” and the operations this student is able to perform such as
“study, research a problem, take a test, etc.” The object-
oriented analysis process produces artifacts such as class,
object, rationale, sequence, activity, and state diagrams. This
problem definition can be captured in the Enterprise Architect
(EA) modeling tool designed to archive the analysis artifacts.
In most cases, this will be a large database. The tool makes it
possible to archive the problem definition and solution which
maintains a complete index for searching and accessing the
model components [6].

2) Phase 2

The second phase of the analysis is the Z-language model
development.

a) Z-Language
The Z-Language is a highly expressive formal mathematical

notation for specifying and designing the behavior of systems
[7]. It is based on set theory and a typed first-order predicate
logic model. Typed means that variables in Z cannot be
defined without knowing the range of values that it can hold
and once the variable is declared its type cannot change. The
two advantages of the Z-Language are abstraction and the
schema structure. Abstraction is the ability to describe what
can be done without stating how it is done. The schema
structure is a means of organizing its notation about the
definition of the problem entities being analyzed.

To introduce a basic type in Z-Language, a given set can be
defined such as UNIVERSITY. The set of all universities can
be written as [UNIVERSITY]. If it is required that a variable
be defined on the set of universities, the following
nomenclature is used:

𝑎: ℙ UNIVERSITY ,
where ℙ stands for the power set of universities. The power
set is all subsets to include the empty set and the set itself [14].

Schemas are used to structure knowledge about a given
entity within the problem. The schema structure has two
sections, declarative and criterion. The declarative section
defines the variables and other schemas establishing the state
of the entity. The criterion section defines the conditions
establishing the relationships between the state variables.

b) Set Theory
Set theory deals with sets, their operations, relationships

and statements about these relations [8]. A set is a collection
of different types of elements. Sets can be defined as a
collection M of definite and distinct objects m of our intuition
or thought (which will be called the ‘element’ of M) into a
whole [15]. Simply set theory is “the ability to regard any
collection of objects as a single entity” [14]. There is the set
of natural numbers (i.e., {0,1,2,3, …}). Also, there are two
other very common sets: the set of integers: { … -3,-2,-
1,0,1,2,3, …} and the set of positive integers {1,2,3, …}.
Shen [8] discusses some of the types of statements that can be
used to describe sets are:

a. If x is an element contained in a set A this may be
written x∈A, which states x is a member of A.
Normally, in set theory notation lowercase letters are
reserved for members of a set whereas upper case
letters are used to define a set. Also, the notation
uses {} to enclose the elements of a set.

b. In set theory, it is possible to define a subset within a
set. A statement describing a subset is A⊆B, which
states A is a subset of B.

This paper is not to be a treatise on set theory, which is treated
in much greater detail in Shen’s work. However, set theory is
part of a two part foundation including predicate calculus for
Z-Language which is the basis in this paper for modeling and
analysis of complex systems.

c) Predicate Calculus
Predicate Calculus can be used effectively to express

relationships and operations between components of a system.
Goldrei [10] defines predicate calculus as “the operations will
usually consist of inputs, outputs, and changes to the state of
the system. The relationship between input, output, and the
before-state and after-state will be described by a predicate
relating and constraining these values.” Predicate calculus can
be used to describe all aspect of a system’s functions.
Predicate calculus is a branch of mathematics that uses terms
and symbols to connect them to form logic statements [10]. In
predicate calculus a predicate is applied to a set of terms.
Terms are simply names for objects in the logic statement.
Also, when a predicate is applied to terms the results of the
relationship can be either true or false. The standard
connective symbols for logic statements are, namely, (¬, ∧, ∨,
⇒, ⇔) whereas the quantifiers are ∃ 𝑎𝑛𝑑 ∀. Beckert [9]
provides the symbol definitions below in descending order of
operator precedence:

¬ negation,

∧ conjunction,
∨ disjunction,
⇒ implication,
⇔ equivalence

The quantifiers are defined as:

 ∃ there exists,
 ∀ for all.

Three other very key operators in developing statements in
predicate calculus are:

 ∪ set union,
 ∩ set intersection,
 \ set difference.

These are just a few of the symbols available to be used as
operators in predicate calculus statements [10]. Through
predicate calculus a very rich environment of logic definitions
can be presented.

d) Formal Specification Language
The key innovation in the modified methodology is the

development of a general formal specification modeling
process for complex systems (Fig. 3).The process produces Z-
Language schematic diagrams and Alloy models as artifacts.

Z-Language

Define
State

Specifications

Define
Event

Specitications

Kitchen
Example

Model

Retention
Model

Object-Oriented
Model

Object-Oriented
Analysis

Alloy
Model

Use Case Model

Class Diagram

Object Diagram

Type
Declarations

Formal General Model Specification

 Specific Model Specifications

Convert Z-Language
To Alloy Language

Execute

 Engineering
Education

 Model

Fig. 3: Specific System Formal Specification Development Process

By using formal language specification methods, a general

event-based specification modeling language has been
defined. A formal specification is defined as a specification
that “uses mathematical notation to describe in a precise way
the properties in which a system must behave, without unduly
constraining the way in which these properties are achieved
[7].” These properties describe what a system must do
without saying how it is to be done. This abstraction makes
formal specifications useful in developing real world
systems.” Thereby an event-based modeling language, system
operations are modeled in a discrete sequence of events in
time. Each event occurs at a particular instant in time and may
or may not produce a change in state of the system. Also,
between consecutive events, it is assumed that there can be no
change in the state of the system.

To clearly understand this general modeling approach,
examples from the “Formal Specification of a Kitchen
Environment” [11] will be used. For example, base modeling
objects in the Kitchen Specification would be the Kitchen,
Timer, InitKitchen, and InitTimer schemas that contain cooks,
kitchen items, cooking ingredients, recipe, etc. The schema
named “Kitchen” is the primary schema in the example. Some
of the supporting objects would be entities defining the events
taking place while cooking in the kitchen, such as, cook,
items, ingredient, and Recipe. The object items can hold the
state of available, dirty or heated. An example of one of the
criterion in the Tarkan’s kitchen example is:

∀ t : ℕ • dom (AvailableItem ⊳ { t }) ∩ dom (DirtyItem ⊳ { t }) = ∅

The statement says for all t (where t associated with time) of
type N, the intersection of the domain of AvailableItems at
time t with the domain of DirtyItems is equal to the empty set.
In essence, the statement is being made that a kitchen item
cannot be available and dirty at the same time.

The formal model specification is initiated by defining the
basic types used for describing the state space of the problem.
For example, the kitchen specification contains a number of
Primitives and Atoms for defining the state space of the
Kitchen Example (Fig. 4). A few of them are outlined below.

Primitives:
KITCHEN_ITEM == KNAME x N
MEASUREMENT == MNAME x N

Atoms:
ENAME (event name): bakeDone | cleanDone | cookDone |
 cutDone | kneadDone | mixDone | putDone |
MNAME (measurement name): teaspoon | tablespoon | cup |
 pint | quart | ounce | pound | package | [11]

Atoms

Queue

Real World
Environment

Event Control

Event Handler

ENAME

MNAME

KNAME

End Results

Error Handler

Timer (Tick)

Execute Event

Enter Queue Exit Queue Begin Event End Event Unknown
Objects

Not Following
Directions

Delivered
Product

Primitives

MEASUREMENT

Ingredients

KITCHEN_ITEM

INAME

events_placed_in_queue errors_recorded

 event_processing

event_flow

EID

Cook CNAME

ExamplesExamples

Fig. 4: General Model for Development of Formal Specifications of Complex

Systems

The state of the system is defined by schema that
establishes the state of the problem. In the kitchen example,
the key schema that define the state of the system are the
Kitchen, Timer, InitKitchen, and InitTimer. In this example,
the Kitchen schema contains the primary data elements for the
problem. Since all events are governed by time, the Timer
schema controls the beginning and end of all kitchen events
(e.g., Cook, CookDone). For example, some kitchen events
are the cut, cutDone, mix, mixDone. These and other events

make it possible to cook a meal. The kitchen example has an
Event schema that includes the Kitchen schema where the
state of the kitchen can be changed.

Schemas are the structures used to define the states of
entities in a model in the form of a declaration section, criteria
section and name [7]. The declaration section defines the state
variables and other supporting schema. Attributes and
behaviors in object diagrams may be used to define types in
declarations. The criteria section defines the relationships that
govern the declared variables. Rationale diagrams can
represent the reasoning that leads to the systems functionality
and implementation. This diagram supports decision making
and captures knowledge [12]. The information provided in
rationale diagrams can be used to set criteria.

3) Phase 3

Phase 3 is the Alloy modeling and system evaluation part of
the MSDLC methodology. Alloy is a modeling language for
expressing complex structural constraints and behavior about
systems. Also, Alloy is a declarative specification language
modeling tool employing first order logic based on the Z-
language [13]. Structures in Alloy are described in space and
time. A unique characteristic of Alloy is that it analyzes
systems with configurations that are undetermined or for those
that have the capacity to change dynamically. Alloy’s ability
to conduct incremental analysis allows for the exploration of
different designs starting from a small model which is then
scaled up. Alloy is able to analyze the model at every step.
The purpose of converting Z-Language to Alloy is to use
Alloy to find and correct errors in the Z specification. The
converted Z-Language can model aspects of the system but
not the entire system. Alloy makes it possible to check the
criteria of the specification to assure correct execution of the
solution [13].

Alloy attacks the notion of software or system abstraction in
problem solution from a unique point of view. The
assumption is that the current approach to problem solution
does not work well. Therefore, Alloy addresses solving
complex problems through the use of three elements, logic,
language, and analysis. Logic provides the building blocks for
the language. All logic structures within Alloy are represented
as relations and operations. Problem states and executions are
described using constraints (i.e., formulas or boolean
expressions). Having a language adds syntax and structure to
the logic descriptions. This approach supports classification
and incremental refinement in the analysis. The analysis
phase is not a solution through a theorem but the use of an
instance process. This analysis approach is a form of
constraint solving. A process of simulation is used to find
instances of states or executions that satisfy a given property.
To check the model, a counterexample is found that violates a
given property. The search for instances that satisfy the
problem statement is done within a scope defined by the user.
Within this scope or space, a large number of instances can be
run to analyze the problem.

E. Design
Design is the process that follows the analysis of a system.

The analysis phase focuses on the system as a conceptual
entity. The design portion answers the question of how a

problem should be solved and not what should be used in the
system solution. Design is concerned with the physical
aspects of the system. For example, design will address the
real world system specifications. At the design stage, the
analyst is focused on the developer and providing him with a
clear picture of the physical system to be implemented. It
should be noted that the system design is driven by technical
problems and becomes the model for construction and
implementation of the system.

F. Implementation
After system design is completed and approved the

implementation phase can begin. Implementation is the
process of construction and installation of the system design.
In some circles this process is call the “roll-out” or placing the
system in production. This production system can be a
sociological system in a community or an educational system
in academia as well a manufacturing system in a plant. The
system development process set forth in this paper applies to
most any type of a system where there are knowledgeable
experts to define and aid in the development of the system. As
pointed out earlier the user or human element is critical to
system modeling, analysis and implementation.

G. Test
Testing is a very critical part of system development.

Complex systems usually have many subsystems. Testing
involves subsystem testing as well as testing of the entire
system. Development of relevant test scenarios is a very
import part of the testing process. It is very important that the
development of test scenarios is done in close concert with the
system users. Any test scenario, data, and best practices
developed during the design phase can be very helpful to the
system test process. As shown in Fig. 2, the results of testing
can be used to make necessary changes to the design, analysis,
use case model or the problem definition steps.

H. Evaluation
In the use case model development process, the system

specifications are defined. Using the system specifications,
they are evaluated against the system solution. The questions
to be answered through this evaluation are the functions of the
system meeting the requirements of the specifications. As
with the testing phase, the results of evaluation can be used to
make changes in the other steps of the system development
process.

IV. CONCLUSION
Analysis and solution of complex system problems pose a

great problem for the 21st century. It will require new research
methodologies, new tools and very innovative approaches to
problem solving. Problems in this decade will be large and
very data intensive. Also, modeling and evaluation must
move to another level from instance evaluation to a proof of
solutions. A more rigorous validation of solutions will make
performance of production systems more stable and error free.

To meet this challenge, it will require close collaboration
between industry and academia. Academia must address real
world problems and industry needs the talent and resources of
academia. Therefore, as we move into the 21st century there

must be a close partnership between academia and industry to
address these complex problems.

V. REFERENCES
1. Bender RBT Inc. (2003). System Development Life Cycle: Objectives

and Requirements. [Online]. Available:
http://www.benderrbt.com/Bender-SDLC.pdf.

2. Mohd Arif, R.; Khalifa, O.O., "Online tutoring system in college: Case
study in private education," Computer and Communication Engineering
(ICCCE), 2012 International Conference, vol., no., pp.608-611, Jul.
2012.

3. Paul Dorsey, “Top 10 Reasons Why System Projects Fail”. Dulcian Inc.
2000.

4. J. Wood and D. Silver. Joint Application Development. New York: John
Wiley & Sons, Inc. 1995.

5. Curtis H. K. Tsang, Clarence S. W. Lau, and Ying K. Leung. Object-
Oriented Technology 3rd ed. London, McGraw-Hill, 2005.

6. G. Spark. Systems. Enterprise Architect (EA) Software .EAP File UML.
Internet: http://www.sirc.org/.

7. J. M. Spivey. The Z Notation, A Reference Manual. New York: Prentice
Hall, 1989.

8. A. Shen and N. K. Vereshchagin. Basic Set Theory (Student
Mathematical Library, V.17). Providence, Rhode Island: American
Mathematical Society, 2002.

9. Bernhard Beckert. “The Specification Language – Formal Specification
of Software.” Internet:
http://formal.iti.kit.edu/~beckert/teaching/Spezifikation-SS04/11Z.pdf

10. Derek Goldrei. Propositional and Predicate Calculus. London, England:
Springer-Verlag, 2005.

11. Sureyya Tarkan, “The Formal Specification of a Kitchen Environment,”
M.S. thesis, University of Maryland College Park, Maryland. 2010.

12. Bernd Bruegge and Allen H. Dutoit, “Rationale Management,” in
Object-Oriented Software Engineering Using UML. Patterns, and Java,
2nd ed. New Jersey: Prentice Hall, 2004, pp. 488-529.

13. Daniel Jackson. Software Abstractions. Cambridge: The MIT Press,
2012.

14. Keith Devlin. “Naïve Set Theory” in The Joy of Sets: Fundamentals of
contemporary Set Theory. New York: Springer-Verlag, 1993, pp. 1-28.

15. F. R. Drake and D. Singh. Intermediate Set Theory. New York: John
Wiley and Sons LTD, 1996, pp. 1-36.

	I. INTRODUCTION
	II. System Development Life Cycle
	III. Modified System Development Life Cycle (MSDLC)
	A. Continuous User Involvement
	B. Joint Application Development (JAD) Session
	C. Use Case Models
	D. System Analysis
	1) Phase 1
	2) Phase 2
	a) Z-Language
	b) Set Theory
	c) Predicate Calculus
	d) Formal Specification Language

	3) Phase 3

	E. Design
	F. Implementation
	G. Test
	H. Evaluation

	IV. Conclusion
	V. References

