
Session 2659

A Networked Instructional
Instrumentation Facility

Stephan C. Werges, David L. Naylor
Department of Electrical Engineering and Computer Science,

University of Illinois at Chicago

The Networked Instructional Instrumentation Facility (NIIF) is a prototype system to allow multi-
user access to a library of sophisticated test equipment for measurements on a library of devices,
in real time via the World Wide Web (WWW). This prototype system is the first realization of
our primary goal to make measurement equipment available in real time to a broad range of users
via the WWW. Since the NIIF is available on the WWW for public use, there are many special
design issues that must be considered. These issues include: 1) The efficient scheduling and
queuing of measurement jobs that may take one or more instruments to perform; 2) Security
precautions to prevent malicious use of the facility; 3) Making the NIIF fault tolerant and robust;
and 4) Designing the client user interface to be intuitive and easy to use for a wide range of users.
To meet these challenges we have developed an object oriented client/server architecture and a
Measurement Applications Programming Interface (MeAPI) for the NIIF.

The basic architecture for the NIIF server consists of four integral parts: instrument objects; the
control objects; measurement objects; and job objects. The instrument object is the lowest level
object in the server, and allows the server to communicate with the instruments that are
physically or logically attached to the server. These instrument objects conform to the MeAPI,
which allows them to plug in to the control object. The control object is responsible for the
validation, queuing and scheduling of measurement jobs, control of the matrix switch that
connects test equipment to test devices, communication with the client, and control of the
instruments. The control object uses a measurement object to define what instruments and
parameters are needed for a given measurement. Lastly, the job object contains the client
information that the control object needs to perform a measurement and returns the data to the
client.

The NIIF's client architecture consists of two parts: the send object, and the receive object. The
send object allows the user to choose a type of measurement, a set of specific measurement
parameters, and a device to test. This object collects the measurement parameters, and sends the
data to the server. The receive object listens for incoming data from the server and allows the
data from the server to be displayed in a variety of different ways. This paper will describe how
the object oriented client/server architecture described above and MeAPI is implemented to meet
the special design requirements of the NIIF.

INTRODUCTION

The explosion of the Internet and especially the World Wide Web (WWW) has revolutionized
how the public obtains and deals with information. The WWW has given the public a simple
way to access vast repositories of on-line information, but the paradigm for this access has been
predominantly a static client/server model. Over the past two years, this static client/server

P
age 2.29.1

model has changed to an active one with the advent of Java and ActiveX. Both of these tools
have allowed the creation of dynamic web pages 1, which enable users to dynamically interact
with the information they receive or the information source itself. This has enabled the WWW to
become a medium for true client/server computing, and led among other things to the creation of
the Networked Instructional Information Facility (NIIF).
Figure 1: Schematic diagram of the NIIF’s measurement server.

Typically, scientific equipment placed on the Internet has been highly specialized and
available only to a limited number of users. Examples of these specialized equipment facilities
are: the Remote Experimental Environment (REE) 2; the University of California at Santa
Barbara Remote Access Astronomy Project 3; the Upper Atmosphere Research Collaboratory
(UARC) 4; and the Collaboratory for Environmental Molecular Sciences (EMSL).5 By contrast
the NIIF is a prototype system to allow multi-user access to a library of sophisticated test
equipment for measurements on a library of devices, in real time via the WWW as shown in
figure 1. This prototype system is the first realization of our primary goal to make measurement
equipment available in real time to a broad range of users via the WWW. The NIIF was
designed using an object-oriented client/server architecture and a Measurement Application
Programming Interface (MeAPI) that we have developed.

The motivation to create the NIIF was to make a “collaboratory,” 6 where students can
perform electronics labs at their own convenience and from any location. Thus, a student need
not be at the university to perform a lab, and that makes the NIIF an excellent remote learning
tool. In a broader sense, the measurement server designed for the NIIF can be used for time
sharing prohibitively expensive equipment between research institutions or in corporations. It
allows equipment to be used around the clock with no geographic barriers.7 The NIIF’s
measurement server provides one approach to making remote measurement available on the
Internet.

P
age 2.29.2

This paper will discuss the general object-oriented architecture and MeAPI of the NIIF,
and how the architecture deals with the special design issues of a public facility on the Internet.
These special design issues include: 1) The efficient scheduling and queuing of measurement
jobs that may take one or more instruments to perform; 2) Security precautions to prevent
malicious use of the facility; 3) Making the NIIF fault tolerant and robust; and 4) Designing the
client user interface to be intuitive and easy to use for a wide range of users.

GENERAL ARCHITECTURE

The NIIF server was built as a service for Microsoft Windows NT Server 4.0 using Microsoft
Visual C++ and the Win32 API. The architecture of the NIIF server consists of four basic types
of objects: an instrument object, a job object, a measurement object, and the control object. The
instrument object is the root object within the server. It contains its own input/output (IO) data
parsers and code for all measurements that can be performed. The instrument object then
communicates with the control object via the MeAPI. The MeAPI specifies that the instrument
object must provide a unique id for each of its measurement functions, provide a unique id for
the instrument itself, and must provide a common interface to call each of the measurement
functions. The advantage of using the MeAPI is that it abstracts an instrument object allowing
the control object to handle many different types of instruments and measurements.

The control object handles the validation, queuing, scheduling, and execution of jobs, and
the control of the matrix switch. The control object itself contains the validation object, queue
object, matrix object, and instrument objects. The validation object checks the parameters of a
measurement job against values in a Microsoft SQL 6.5 database to make sure that the
measurement will not harm the device under test (DUT) and the test equipment. It also fetches
the locations of the DUT and the test equipment on the matrix switch. The queue object queues
jobs and commits the jobs to the instruments. The matrix object controls the matrix switch that
connects the proper test equipment to the proper DUT.

The job object contains all relevant data about the client, what measurement is to be
performed via a measurement object, the appropriate measurement parameters, any error
messages encountered during the measurement, and the data to be sent to the client when

Figure 2: Schematic diagram of software architecture and data flow in the measurement server.

P
age 2.29.3

available. It also handles the sending of the data back to the client or any error messages. The
job object also can be stored to disk for archival or error checking purposes.

The measurement object describes a particular measurement. It handles the
decomposition of a job object in to pieces that must be passed to each instrument. This object
interfaces with the validation object to make sure that all required parameters for a measurement
are present.

The client has been built with Java using Microsoft J++. The client architecture consists
of the send client and receive client. The send client takes the user input, parses it, sends it to the
server, and spawns a receive client. The receive client receives any error messages sent from the
server, receives the output from the server, and provides facilities to manipulate the data from the
measurement.

The cycle of a measurement request is shown in figure 2. The incoming data is received
by the server and a job object is spawned. The job object is then decomposed by the appropriate
measurement object and passed to the validation object. Here the job is checked to make sure
that all the parameters are acceptable, and the locations of the test equipment and DUT in the
matrix switch are obtained. If all parameters are proper then the job is passed to the queue. If
not the job is rejected and the user is informed. Once the job has reached its turn in the queue the
matrix object is called to electrically connect the test equipment to the DUT and the measurement
is performed. The results of the measurement or error messages are returned to the job object
after the measurement has been performed. At this point, the job is serialized and the results sent
back to the client. Once the data has been received, the user may manipulate it with the tools
provided by the send client.

DESIGN ISSUES

Queuing and Scheduling

The NIIF has been designed to be used in a multi-user multi-instrument multi-DUT environment,
and this has created a queuing and scheduling problem. The problem is as follows: Consider a
measurement that requires three instruments to be available simultaneously (figure 3a). Each
particular job for an instrument is placed at the back of the appropriate instrument queue and the
queues are allowed to empty. If a measurement job for one of the instruments should reach the
front of its queue, it will stall the queue waiting for the other instruments measurement jobs to
reach the front of their queues. This is a very inefficient use of the NIIF’s resources. To solve
this problem a novel priority queue has been developed.

P
age 2.29.4

Figure 3: a) The test job is placed in the queues of each of three required instruments. The queues then are allowed to empty using a
first in first out algorithm. Notice that one of the jobs in the queues reaches the front of a queue before the others. This stalls that queue and
prevents job processing on that instrument. b) The test job is placed in the instrument queues, but the instrument queues communicate to keep
the job at the same level in the queues. As new jobs arrive in the queues they can jump over the test job, because they can be processed before
the test job reaches the front of the queues.

The NIIF’s main queue object consists of intercommunicating priority queues for each
instrument and DUT. These smaller priority queues communicate to keep multi-instrument jobs
level between the queues and allow other jobs to be processed in the queues. This queuing
algorithm differs from standard queuing algorithms, because simultaneous access to some or all
resources that the queues control is required.8 Consider the same three instrument measurement
job with the new queuing algorithm (figure 3b). The jobs are inserted in to the different
instrument queues such that they arrive at the front of the queue at the same time. In addition,
other jobs are allowed to jump over this job if they can be completed before this job reaches the
front of the queue. This simple queuing and scheduling algorithm should allow the NIIF to
process jobs more efficiently.

Security

The NIIF is a public facility on the Internet and vulnerable to attacks and malicious use. Two
major precautions have been put in place to safeguard the NIIF. The first precaution is that the
user is never aware of which TCP port the NIIF is monitoring for measurement requests. This is
done to prevent anyone from directly accessing the NIIF’s measurement server without using an
official client. When the user first downloads a Java client it is passed the utility port number of
the NIIF. From this utility port the client downloads the TCP port number that the NIIF uses to
receive measurement requests.

The second precaution lies in the validation object of the server. Here the job is checked
to make sure that: 1) the measurement job is originating from a valid client through a security
code and, 2) that all parameters in the measurement job do not exceed the tolerances specified for
the instruments and DUT in the SQL database. With the validation object no unsafe

P
age 2.29.5

measurements are allowed to be performed. Thus protecting the measurement equipment and
DUTs from misuse.

Fault Tolerance

The NIIF is fault tolerant in both the server and the client. The server’s fault tolerance is rooted
in the instrument object. If an instrument should have a problem, it communicates the problem
to the control object. Depending on the situation the control object will halt the queue and wait
until all instruments have finished their measurements. It will then try to reset the instrument and
restart the queue. If this fails, the instrument and all measurements requiring that instrument are
disabled, the jobs that required this instrument are purged from the queue, the affected users are
informed of the problem, the queue is restarted, and all other measurements are completed.

The fault tolerance of the NIIF clients lies in the fact that the send and receive clients are
two different objects. It was found during development that web browsers could be very unstable
when running a programmer controlled multithreaded applet. By dividing the send and receive
client into two different objects the web browser takes care of the threading, providing a much
more stable applet. Moreover, if either send or receive client should fail it will not crash the
whole applet because they are tied together by threads. This allows the NIIF to have a more
robust client.

Client Design

Since the NIIF is available to anyone using a web browser on the Internet, the client interface
must be intuitive and easy to use. The ease of use is achieved by writing a send client for each
type of measurement. The client architecture allows any send object to be plugged in to the
client. Thus a specific user interface can be designed for a given measurement type, and used
with a generic or specifically designed receive client. This feature also allows the NIIF to be
extended to perform highly specialized measurements.

CONCLUSION

The Networked Instructional Instrumentation Facility is to our knowledge the first public multi-
user remote measurement facility that allows users to perform measurements with a library of test
equipment on a library of test devices. Its novel object-oriented architecture has been designed to
meet the many special issues that face on-line Internet facilities. These special issues include: 1)
The efficient scheduling and queuing of measurement jobs that may take one or more instruments
to perform; 2) Security precautions to prevent malicious use of the facility; 3) Making the NIIF
fault tolerant and robust; and 4) Designing the client user interface to be intuitive and easy to use
for a wide range of users. The NIIF is the first facility of this kind and is one possible model for
remote test and measurement on the Internet.

References

[1] David Hazarika, “Developing and Deploying Interactive Applications on the Internet,” Microsoft Developer
Network Library-Visual Studio 97.

P
age 2.29.6

[2] Remote Experimental Environment, http://www.es.net/hypertext/collaborations/REE/REE.html.

[3] University of California at Santa Barbara Remote Access Astronomy Project,
http://www.deepspace.ucsb.edu/rot.htm.

[4] Upper Atmosphere Research Collaboratory, http://www.si.umich.edu/UARC/.

[5] Collaboratory for Environmental Molecular Sciences,
http://www.emsl.pnl.gov:2080/docs/collab/CollabHome.html.

[6] R. Kouzes, J. Myers, and W. Wulf, “Collaboratories: Doing Science on the Internet,” Computer, Vol. 29, No. 8,
August 1996, pp. 40-46.

[7] National Research Council, National Collaboratories: Applying Information Technologies for Scientific
Research, National Academy Press, Washington, D.C., 1993.

[8] L. Kleinrock, Queuing Systems Volume 2: Computer Applications, Wiley, New York, 1976.

Biographies

STEPHAN C. WERGES (scwerges@uic.edu) is a designer and the lead programmer for the Networked Instructional
Instrumentation Facility, as well as Network Administrator for the Microfabrication Applications Laboratory at the
University of Illinois, Chicago. His research interests include distributed systems, user interface design, and virtual
reality. Werges received his BS in mathematics from the University of Illinois, Chicago and is currently pursuing his
MS in electrical engineering and computer science at the University of Illinois, Chicago.

DAVID L. NAYLOR (naylor@uic.edu) is an Associate Professor in the Electrical Engineering & Computer Science
Department at the University of Illinois at Chicago. He is Co-Director of the Microfabrication Applications
Laboratory and the MicroFluidics Center at UIC and has research interests in: Microfabricated fluidic and optical
components; Microelectromechanical systems (MEMS); and Internetworked instrumentation. He received his BA in
physics from Oxford University and Ph.D. in electrical engineering from the University of Southern California.

P
age 2.29.7

