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Abstract 
 

This paper presents a description of a first undergraduate course in mechanics of 
materials.  Although many of the features of this course have been used by other faculty and 
presented formally in textbooks, the authors believe they have united them in a way that 
produces a course that is unique and innovative.  The title of the paper includes Theory, 
Analysis, Verification and Design to emphasize the unification of these four strategic elements.  
The course leads the student through a traditional exposure to theory, but a non-traditional 
progressive approach to analysis that uses a modern engineering tool.  Introduction of 
verification develops the student’s discipline to question and test ‘answers’.  If a problem 
solution can be formulated in general symbolic format, and if specific solutions can then be 
obtained and carefully verified, the extension from analysis for one set of variables to the design 
for different sets of specifications can be done quickly and easily with confidence.  Three 
examples are included to demonstrate the approach and one example considers design. 
 
Introduction 
 

In a homework assignment, the ultimate goal for a majority of undergraduate engineering 
students is simply to obtain the ‘answer’ in the back of the book.  A common approach is to 
search the textbook chapter for the applicable formula or equation and immediately insert 
numbers and calculate an answer.  This approach is often successful with problems that require 
few equations, especially if the equations can be solved sequentially or are easily manipulated to 
isolate the unknown variable.  The unfortunate aspect of this is that students may spend very 
little time focusing on the basic fundamental physics of the problem and, generally, no time at all 
on the very important verification of the ‘answer’!  As problems become more complex, with 
increased numbers of simultaneous equations and/or nonlinear equations, such as with statically 
indeterminate problems, this approach is laborious and fraught with opportunities for equation 
manipulation errors.  As a result, introductory course instruction and textbooks do not involve 
these types of problems.   In reality, many engineering problems contain multiple unknowns, 
coupled equations and complex nonlinear equations. 
 

Problem statements in introductory mechanics of materials textbooks1-40 are presented 
with known variables defined numerically, symbolically or in combination.  The authors have 
found from experience that students clearly prefer problems where the known variables are 
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defined numerically versus symbolically.  Current textbook illustrative examples predominately 
combine the fundamental equations to isolate the unknowns yielding sequential solutions in 
symbolic form.  Next, if supplied, known numerical values are inserted and unknowns 
determined. 

 
The authors propose that all variables be retained symbolically, and all equations be 

written symbolically in natural form without any algebraic manipulation.  Once all equations are 
developed, they are solved by the method of choice, i.e., by hand and/or, preferably, a modern 
engineering tool.  For all but the simplest problems, the authors strongly endorse the use of a 
commercial program equation solver, supported by verification of the result.  This approach 
allows the students to focus on the basic fundamental physics of the problem rather than on the 
algebraic manipulation required to isolate the required solution variable(s). 

 
The paper will first discuss Theory, Analysis, Verification and Design, to emphasize the 

focus of our approach to teaching mechanics of materials and to indicate how it differs from past 
and current textbooks.  The paper then considers three simple mechanics of materials examples, 
one of which considers design, to demonstrate our approach. 
 
Theory 

 
The theory and topic coverage is typical of a traditional one semester introductory 

mechanics of materials course.  Considerable attention is focused on concepts and procedures 
which the authors have found to be difficult for the student, such as: 

 
• Free body diagram construction. 
• The distinction between applied forces and couples on a body and internal forces and 

couples on an exposed internal plane. 
• Construction of diagrams for internal force, stress, strain and displacement for axial and 

torsion problems as well as the traditional shear force, bending couple and displacement 
diagrams for beams. 

• Use of coordinate axes and careful sign control for all problems involving displacement. 
• The use of compatibility diagrams. 

 
Theory is presented and followed with example problems throughout the course. The examples 
include an explanation of every step with stated governing principles.   
 
 The ten topics considered in our course are presented sequentially in the following order: 
 

1. Planar Equilibrium Analysis of a Rigid Body 
2. Stress 
3. Strain. 
4. Material Properties and Hooke’s Law 
5. Centric Axial Tension and Compression 
6. Torsion 
7. Bending 
8. Combined Analysis: Centric Axial, Torsion, Bending and Shear 
9. Static Failure Theories: a Comparison of Strength and Stress 
10. Columns 
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A design case study of a hoist structure is included at the conclusion of each topic to reinforce 
the concepts presented. 
 
Analysis 

 
A primary goal in this course is to show the student that force and elastic deformation 

analysis of single or multiple connected bodies is based on the application of only three 
fundamental sets of equations: 
 

• rigid body equilibrium equations, 
• material load-deformation equations derived from Hooke’s Law and 
• equations defining the known or assumed geometry of deformation. 

 
The commonality of a general approach to all problems is emphasized, an approach that is 
identical for determinate and indeterminate structures containing axial, torsional and/or bending 
loads.  This general approach is formulated to emphasize:  
 

• identification of applicable fundamental independent equation set(s) being written, 
• formulation of the necessary governing equations in symbolic form, with no algebraic 

manipulation to isolate unknowns,  
• matching the number of unknowns with the number of independent equations and  
• entering the known numerical data and solving for the unknown variables. 

 
For the general problem involving deformation, our proposed non-traditional structured 

problem solving format contains eight analysis steps.  The students are required to follow the 
appropriate steps listed below for every in-class and homework problem they solve.  

 
1. Model. The success of any analysis is highly dependent on the validity and 

appropriateness of the model used to predict and analyze its behavior in a real system, 
whether centric axial loading, torsion, bending or a combination of the above.  
Assumptions and limitations need also be stated.  This step is not explicitly emphasized 
in any mechanics of materials textbook. 

 
2. Free Body Diagrams.  This step is where all the free body diagrams initially thought to 

be required for the solution are drawn.  The free body diagrams include the complete 
structure and/or parts of the structure.  Very importantly, all dimensions and loads, even 
those which are known, are defined symbolically. 

 
3. Equilibrium Equations.  The equilibrium equations for each free body diagram required 

for a solution are written.  All equations are formulated symbolically.  There is no 
attempt made at this point to isolate the unknown variables.  However, every term in each 
equation must be examined for dimensional homogeneity. 

 
4. Compatibility and Boundary Conditions. One or more compatibility equations are written 

in symbolic form to relate the displacements.  A compatibility diagram is used when 
appropriate to assist in developing the compatibility equations.  All equations are 
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formulated symbolically and there is no algebraic manipulation.  Every term in each 
equation must be examined for dimensional homogeneity.  Although compatibility 
equations are commonly written for indeterminate problems, the authors emphasize their 
use for determinate problems just as is done in the textbooks by Craig7, Crandall8 et al., 
Shames30, and Shames & Pitarresi31. 

 
5. Material Law.  The material law equations are written for each part of a structure based 

on the Model in Step 1.  All equations are formulated symbolically and there is no 
algebraic manipulation.  Every term in each equation must be examined for dimensional 
homogeneity. 

 
6. Complementary and Supporting Formulas.  Steps 1 through 5 are sufficient to solve for 

the (primary) variables force and displacement in a structures problem.  Step 6 includes 
complementary formulas for other (secondary) variables such as stress and strain, 
variables which may govern the maximum allowable in service values of force and 
displacement, but which do not affect the governing equilibrium or deformation 
equations.  Supporting formulas are those which might be required to supply variable 
values in the material law equations and complementary formulas; formulas such as area, 
moment of inertia, centroid location of a cross-section, volume, etc. 

The complementary and supporting formulas are written symbolically and are 
necessary to develop a complete analysis.  The complementary formulas might involve 
solution governing variables such as stress, strain and stiffness.  Supporting formulas may 
be necessary to completely define variables in Steps 3 through 5 and in the 
complementary formulas.  These formulas might include cross-sectional area, polar 
moment of inertia, centroid location, moment of inertia, section modulus, effective 
length, radius of gyration, etc.   

 
7. Solve.  The independent equations developed in Steps 3 through 6 solve the problem.  

The students compare the number of independent equations and the number of 
unknowns.  The authors emphasize that the student should not proceed until the number 
of unknowns equals the number of independent equations.   

The solution may be obtained by hand, and this generally requires algebraic 
manipulation.  Alternatively, the solution of any number of equations, linear or non-
linear, can be obtained with a modern engineering tool.  With intelligent application of 
verification (Step 8), the computer program is a much more reliable calculation device 
than a calculator.  (ABET41 criterion 3(k) states that engineering programs must 
demonstrate that their students have the “ability to use the techniques, skills, and modern 
engineering tools necessary for engineering practice”.)  The students are allowed to select 
the modern engineering tool of their choice, and this might include Mathcad42, Matlab43 
and TKSolver44.  The authors have not seen this solution procedure in any mechanics of 
materials textbook. 

 
8. Verify.  This important step is a critique of the answer, and is discussed in depth in the 

next section.  This step is considered only in the mechanics of materials textbook by 
Craig7, however, only a qualitative approach is considered.  In our approach both 
qualitative and quantitative critique of the answer is considered. 
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Problems in statics require only Steps 1, 2, 3, 6 and 7.  These five steps have not been employed 
in the treatment of statics problems in any statics or mechanics of materials textbook.  
Furthermore, Steps 1 through 8 have not been suggested in any mechanics of materials textbook. 
 

Pedagogically the step-by-step solution format allows a student to build a structure in 
their minds of how to efficiently approach a problem and solve it.  The authors believe that this 
step-by-step procedure will help students build logic, promote analytical thinking, provide a true 
physical understanding of the subject and, hopefully, extend the same disciplined process to 
other courses. 
 
Verification 

 
One of our educational goals is to convince students of the wisdom to question and test 

solutions to verify their ‘answers’.  We do this by integrating verification as part of the structured 
problem solving format discussed in the previous section.  There are very few textbooks that 
have addressed verification.  It has been considered in statics by Sandor45 and by Sheppard & 
Tongue46, and in mechanics of materials by Craig7.  Verification is new to almost all 
undergraduates, but it is critical and really must be formally integrated into the solution process!  
Once our students graduate and become professionals, they must be prepared to stand behind 
their ‘answers’.  

 
In our approach, verification Step 8 is carried out after solution Step 7 is performed once.  

The power of our proposed use of the modern engineering tool rests in the ability to quickly and 
easily run many cases to verify the problem solution.  How does one test the problem solution?  
Listed below are some suggested questions that students may apply for the purpose of 
verification of their ‘answers’. 
 

• A hand calculation?  A longhand analysis for the complete solution, a partial 
solution and supporting calculations, e.g., geometric properties.  The pitfall here is 
that a longhand solution of incorrect equations might check the computer solution (of 
the same incorrect equations) leaving a false impression of verification of the 
‘answer’. 

 
• Comparison with a known problem solution?  A known problem solution may be 

found in references, e.g., handbooks, appendices, textbooks, etc. 
 
• Examination of limiting cases with known solutions?  Limiting cases are constructed 

which establish a problem with a known solution.  For example, removing the static 
indeterminacy by reducing the stiffness (lowering of the elastic modulus) of 
structural components yields an example that may be tested with a hand calculation 
or compared to other known solutions.  Altering the placement of load(s) is another 
example.  Known problem solutions may be found in handbooks, appendices, 
textbooks, etc. 

 
• Examination of obvious known solutions?  These are problems that are simple and 

which yield quick, very apparent known solutions.  For example, zero applied loads 
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must yield no response.  Other examples, a concentrated applied load positioned at a 
rigid support would result in zero response, a load reversal would yield the same 
magnitudes but opposite signs. 

 
• Your best judgment?  This is where an examination of the answer points to obvious 

quantitative and/or qualitative errors.  In a quantitative sense, are answers of the 
correct order of magnitude?  From a qualitative perspective, do the applied loadings 
produce reactions and displacements in directions obvious from a physical 
understanding of the problem?  Are the signs correct? 

 
• Comparison with experimentation?  Experimentation gives substance to theoretical 

concepts and provides a means of augmenting insights gained from analytical 
studies.  Furthermore, it can also be used to verify results.  Due to time limitations in 
our course, experimentation is not considered.  

 
As indicated above, attempts at solution verification may take many forms, and, although 

in some cases it may not yield absolute proof, it does improve the level of confidence.  The 
authors believe verification Step 8 will help students build logic, promote analytical thinking and 
provide a better physical understanding of the subject. 
 
Design 
 

Engineering design defined by ABET EC200041 is “the process of devising a system, 
component, or process to meet desired needs.  It is a decision making process (often iterative), in 
which the basic sciences, mathematics, and the engineering sciences are applied to convert 
resources optimally to meet these stated needs.”  Another educational goal of our course is to 
introduce design through homework problems and short, simple and well-defined projects.  As 
the student progresses to more advanced courses, i.e., machine design, structural design, etc., 
projects become lengthier, open-ended and difficult, leading to the major design experience.   

 
In accordance to ABET EC200041, an engineering program must demonstrate that the 

graduates of a program have satisfied Criteria 3(c) “an ability to design a system, component, or 
process to meet the desired needs…”.  The approach proposed in this paper can be used to 
demonstrate Criteria 3(c) applied to individual structural components.  Furthermore, if the 
approach is used in other courses, i.e., statics, machine design, structural design, etc., then this 
can be used to demonstrate ABET EC200041 Criteria 4 as follows: “Students must be prepared 
for engineering practice through the curriculum culminating in a major design experience based 
on the knowledge and skills acquired in earlier course work…”. 

 
Some mechanics of materials textbooks that introduce design include Beer & Johnston2,3, 

Craig7, Pytel & Kiusalaas25, Shames30, Shames & Pitarresi31, Ugural37 and Yeigh40.  In general, 
the presentations involve homework problems or special problems identified under the category 
of computer application.  The problems tend not to have a structured format and request a single 
solution for a single set of specific requirements.  In other words, the solutions are not developed 
in general symbolic form.  This certainly limits the opportunity for solution verification testing 
and extension to iterative design studies. 
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  The proposed approach in this paper is based on implementation of symbolic equations 
and therefore allows easy extension to design.  With equations written in symbolic form, they are 
entered into a modern engineering tool (equation solver) and validated through thorough testing 
in Step 8.  The equations then may be used not only for repetitive analysis of a structure, but also 
for design of a similar structure, where the dimensions and materials must be selected for a given 
loading.  Incorporating a computer equation solver with the ‘raw’ fundamental symbolic 
equations, as proposed in our approach, not only leads to easy design applications, but also has 
the added benefits of reduced opportunity for algebraic errors and increased engineering 
productivity. 
 
Introduction of Examples 
 

The first example to be considered is a statically determinate axial composite bar 
subjected to concentrated loads.  After this problem is solved, we will make the structure 
statically indeterminate and show that the governing equations are identical to the statically 
determinate case and may be solved with only a change in the recognition of known and 
unknown variables.  The third example considers a design application of the second example.  
The example problems are presented with discussion as one might find in a textbook.  The 
examples will focus on three elements of our approach that includes Analysis, Verification and 
Design and it is assumed that the reader has the appropriate background in Theory.  The 
problems will be solved using the structured problem solving format discussed in the Analysis 
section. 
 
Example 1 Two Segment Determinate Bar with Concentrated Loads. 

 
The composite round bar in Fig. 1 consists of two segments. Each segment has a 

specified length, cross section diameter and material.  The bar is rigidly supported (uA = 0) at the 
left end, point A, and two forces are applied as shown; PB at the junction of the sections, point B, 
and P

B

C at the end, point C. 
 
Derive the governing symbolic equations that will yield the displacement of the bar cross 

sections at locations B and C, and solve for the displacements using the following input: 
 
PB = - 18.0 kN,  PB C = 6.0 kN, 
L1 = 0.508 m,   L2 = 0.635 m, 
d1 = 40 mm,   d2 = 30 mm, 
Steel: E1 = 207 GPa,  Aluminum: E2 = 69 GPa. 

X

          L L1 2

P P
A B CB C

(1) (2)

 
Figure 1. Two segment determinate bar with concentrated loads. 
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SOLUTION: 
1. Model.  Figure 2(b) shows the full composite bar with the reference coordinate x axis origin 

located at the wall. This x axis is common to both segments (1) and (2). The displacements 
uB and uB C are shown in Figs. 2(a) and (b) as vectors indicating the change in position from 
the undeformed state.  In Figs. 2(c) and (d), the bar is separated with a cut just to the left of  
point B, the point where the force PBB is applied.  The separated bars are uniform with end 
loads only.  Since each segment is a uniform bar with end loads, we will apply to each 
segment the material law derived in class.  The assumptions of this model are consistent with 
a uniform bar with end loads. 

 
2. Free Body Diagrams.  The free body diagrams of the individual segments are shown in Figs. 

2(c) and (d).  The individual segments, FBDs I and II, are the full lengths of the two 
segments of the bar because we want to involve the displacements only of points A, B and C.  
Note that the separating cut has been made just slightly to the left of point B so that the force 

 is internal to segment (1).  If the cut had been made to the right of point B, we would 
show a force  that would have a different magnitude because it would be internal to 
segment (2), not segment (1).  Note also, as a standard practice, all unknown internal bar 
forces are, and will continue to be, drawn in the positive sense (tensile), i.e., directed outward 
from the surface. 

)1(
BF

)2(
BF

 

R

F

          L L1 2

u
u

P P

P

A B C

B
C

A

B C

C

 

PB

A BFBD I

B CFBD II

Very Thin IMAGINARY slice
shown for clarity of solution only.

(1) (2)

FB(1)

(2)

Assumed Deformation

(a)

(b)

(c)

(d)

x

x

y

B

(1)

(1)

 
Figure 2. Assumed deformation and free body diagrams of structure and segments. 

 
3. Equilibrium Equations.  Writing the equilibrium equations for each segment in Fig. 2: 

 
FBD I:  = R)1(

BF A      (1) 
FBD II:  = P)1(

BF B + PB C     (2) 
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Note that if we are given the applied forces PB and PB C, the internal forces and R)1(
BF A can be 

calculated now.  Since the forces can be calculated solely from the application of the 
Equilibrium Equations, we say that the force system is statically determinate. 
 

4. Material Law.  We apply the material law shown in Fig. 3 for the uniform end loaded bar to 
each of the individual segments (1) and (2).  The common point B in Fig. 2(b) will be 
assigned to the end of each segment in Figs. 2(c) and 2(d) at the point where segments (1) 
and (2) are separated. 

 

F

u

y

u
L

F
 x

u(x)

ba

a

b

a b

 
A, E Constant 

AE
LFuu b

ab +=  

Figure 3.  Material law and sign convention for a uniform, homogeneous, linear elastic bar 
with end loads. 

 
Substituting the appropriate symbols and subscripts and adhering to the sign convention in 
Fig. 3 yields the following: 

Segment (1):  
11

1
)1(

EA
LFuu B

AB +=    (3) 

Segment (2):  
22

2

EA
LPuu C

BC +=    (4) 

 
5. Compatibility and Boundary Condition(s).  Compatibility is intended to define how the 

individual separated segments deform relative to one another in the assembled structure.  For 
this case where displacements occur only along a straight line, we simply require the 
displacement of identical points in the individual segments to be equal, otherwise, the 
solution could indicate a gap or overlap at that point.  We force this compatibility by 
assigning the same displacement symbol to the common point in each segment.  For 
example, in Figs. 2(c) and (d), the displacement of point B in segment (1) must equal the 
displacement of point B in segment (2).  For this very simple compatibility condition, the 
common displacement symbol upoint, will always be used without the need to introduce a 
formal equation. 

 
The boundary condition is the known displacement of point A at the wall: 

 
uA = 0 for a rigid support 
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6. Complementary and Supporting Formulas.  In this problem no complementary formulas are 
needed.  The supporting formulas relating the cross section areas to the segment diameters 
are as follows: 

4

2
1

1
dA π

=        (i) 

4

2
2

2
dA π

=        (ii) 

7. Solve. Considering the boundary condition, uA = 0, as known, we have 4 independent 
equations, Eqs. (1), (2), (3) and (4), for the 4 unknown variables: 

 
RA, , u)1(

BF B and uB C 

 
The solution of the governing equations (1) through (4) and the supplementary equations (i) 
through (ii) is obtained with an equation solver program.  The solution is the following: 

 
)1(

BF = − 12.0 kN 
RA = − 12.0 kN 
uB = - 23.4 μm B

uC = 54.7 μm 
 
8. Verify.  Here is the place to make a strong case for the use of a modern engineering tool 

(equation solver).  Having entered symbolic Eqs. (1) through (4) in an equation solver along 
with the formulas, Eqs. (i) and (ii), for calculation of areas, we now have a tool for testing the 
solution obtained in Step 6.  Listed below are some suggested tests for this problem: 

 
• Compare output with a hand calculated solution, both the final results and intermediate 

values such as the segment cross-sectional areas. 
 

• Find similar problems with answers in other texts.  Substitute the new values and 
compare results. 

 
• Substitute equal values of lengths, areas and elastic modulus, and let PB = 0, the solution 

should be for a uniform, homogeneous bar of length 2L with end load P
B

C: 
AELLPu CC )( 21 +=  

 

• Substitute PC = 0, the solution should be the deformation of segment (1) only: 
 

111 EALPuu BBC ==  
• Substitute E1 ∞→ , yields 
 

uB = 0 B

222 EALPu CC =  
• Let E2 , yields  ∞→

 
111)( EALPPuu CBCB +==  
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• Substitute E1 ∞→  and E2 , yields ∞→
 

uC = uB = 0. B

• Let PB and PB C have the same magnitude, but opposite directions yielding 
 

uB = 0 B

222 EALPu CC =  
• etc. 
 
 

Example 2 Two Segment Indeterminate Bar with Concentrated Load. 
 
The composite round bar of Example 1 is modified by applying an additional rigid 

support at the right end as shown in Fig. 4, thus making the problem statically indeterminate.  
The bar is subjected to the concentrated load PB at point B.  In this example, the right end 
displacement is known (u

B

C=0) and the reaction force at the right end support is unknown, 
whereas in Example 1, the displacement was unknown and the force was known. 

 
Derive the governing symbolic equations which will yield the displacement of the bar 

cross section at location B, and solve for the displacement using the following input:  
 
PB = - 18 kN, B

L1 = 0.508 m,   L2 = 0.635 m, 
d1 = 40 mm,   d2 = 30 mm, 
Steel: E1 = 207 GPa,  Aluminum: E2 = 69 GPa. 

          L L1 2

A B C

y

xPB
(2)(1)

 
Figure 4.  Two segment indeterminate bar with a concentrated load. 

 
SOLUTION: 

To solve this problem for the unknown reaction at the right end and the displacement of 
point B, one simply has to input the known displacement uC of point C and solve for the 
unknown reaction force PC.  All governing independent symbolic equations are exactly the same; 
the free body diagrams are the same, equilibrium equations are the same, the material law 
equations are the same and compatibility is the same.  All problems, statically determinate and/or 
indeterminate must satisfy the same fundamentals: equilibrium, compatibility and material law.  
Therefore, there is absolutely no change in the equations that have been entered into the equation 
solver.  The only difference is in the specification of the force and displacement boundary 
conditions to achieve a particular solution. 
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It should be noted that the solution of the governing equations for this problem has been 
subjected to the verification Step 7 in Example 1.  The model is the same, the governing 
equations are the same, only the boundary conditions have been changed. 

 
Substituting the knowns supplied in the problem statement and the boundary conditions 

yields the following results: 
 

)1(
BF = − 15.65 kN 

RA = − 15.65 kN 
PC = 2.35 kN 

uB = - 30.6 μm B

 
Example 3 Design Application of Example 2. 

 
The solution of the composite round bar of Example 2 yields a displacement of point B 

which is determined to be excessive.  This displacement can be modified with permissible 
change of the diameter of segment (2).  Solve for the diameter of segment (2) which will limit 
the displacement of point B to - 20 μm. 
 
SOLUTION: 

There certainly are different approaches to solving this design problem as follows: 
 

• Solution Alternative 1.  Input a list of independent diameter variable d2  and solve for the 
list of corresponding displacements uB at point B.  Select the diameter dB 2 satisfying the 
displacement design criteria. 

 
• Solution Alternative 2.  Create a plot of diameter d2  versus displacement uB.  Select the 

diameter d
B

2 satisfying the displacement design criteria. 
 

• Solution Alternative 3.  With the governing equations in an equation solver, the solution 
of this problem is very easy.  Establish the diameter d2 of segment (2) as the unknown 
and the displacement uB of point B as the known of the stated magnitude.  The solution 
yields the following for the diameter d

B

2 of segment 2 based on the displacement design 
criteria: 

d2 = 67.42 mm 
The solution, although coupled and non-linear, is obtained directly with no intermediate 
analyses as required in Solution Alternatives 1 and 2. 

 
Solution Alternatives 1 and 2 were the typical approach taken when structured 

programming languages, e.g., Basic, C, FORTRAN, Pascal, etc., became available.  These 
languages require isolation of the knowns from the unknowns on opposite sides of the equation, 
and changing the variables from known to unknown requires reprogramming.  The required 
algebraic manipulation is undesirable from a labor and accuracy standpoint.  At present, 
however, many modern engineering tools include equation solvers that do not require isolation of 
the dependent variables.  This greatly increases the flexibility of the tool resulting in simplicity 
and much less labor in repetitive analyses. 
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Conclusion 

The authors believe that the first course in mechanics of materials should present not only 
the basic theory, but also an approach to problem solving which encourages the student to: (1) 
describe the problem model with assumptions and limitations, (2) preface equations with a clear 
statement of the principle involved, (3) solve the equations with appropriate modern engineering 
tools and (4) conduct a critique of any answer.  In addition, the student should learn that the 
mathematical model providing an analysis solution of a problem can almost always be converted 
into a design tool for a similar physical system. 
 

Teaching the student to model a general physical problem with the fundamental equations 
written in symbolic form, with no variable values specified, helps the student to more fully 
concentrate on the fundamental principles taught in the course.  Introducing the modern 
engineering tool to solve the equations removes the necessary manipulation of the equations to 
isolate the dependent variables.  Training the student to examine and test the answer becomes an 
important goal in our course.  The proposed approach can also be used in follow up design and 
nondesign courses that includes advanced mechanics of materials, machine design, structural 
analysis, structural design, etc.  Students should be prepared to solve the more complex 
problems, and use of the currently available modern engineering tools makes that possible. 
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