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A New Approach for Teaching In-Plane Principal Stresses, 

Principal Directions and Maximum Shear Stress for Plane Stress 
 

 

Abstract 

 

The topic of in-plane principal stresses, principal directions and maximum shear stress for a state 

of plane stress is typically taught in introductory mechanics of materials and solid mechanics 

courses using the following approach. First, the equations for the normal and shear stresses on an 

inclined plane are obtained applying the principle of static equilibrium to an infinitesimal wedge 

element. Then, the derivatives of the equations for the normal and shear stresses on the inclined 

plane with respect to the angle used to define that plane are found and set equal to zero to find 

the angles corresponding to the maximum and minimum algebraic values for the normal and 

shear stresses. Based on the expressions obtained for those angles, equations to find the in-plane 

principal stresses and the maximum in-plane shear stress are presented and the relative 

orientation of the planes corresponding to those stresses is discussed. 

 

In this paper, a different approach is used to obtain the equations for the in-plane principal 

stresses, the maximum in-plane shear stress and the angles corresponding to the planes in which 

those stresses occur. Using the idea of a phase angle that is commonly employed in the analysis 

of signals or physical quantities that involve a linear combination of sine and cosine functions of 

the same angle, the equations for the normal and shear stress on an inclined plane are expressed 

in terms of trigonometric functions of twice the difference between the angle that defines the 

inclined plane and a phase angle. Plots of the resulting expressions are presented and used to 

quickly obtain formulas for the values and orientations of the planes for the stresses in question. 

The approach, although relatively simple, is mathematically rigorous and allows students to 

visualize in a convenient way the relationship between the normal and shear stress on an inclined 

plane. Furthermore, it can be used to show in a straightforward fashion that the two equations 

can be combined to represent the equation of a circle and thus serve as convenient starting point 

to introduce the concept of Mohr’s circle. 

 

Introduction 

 

Exploring different ways of presenting topics covered in introductory mechanics of materials and 

solid mechanics courses is of particular importance. The concepts taught in those courses serve 

as the foundation over which students build additional knowledge and constitute an integral part 

of their professional expertise. Efforts to improve student learning typically focus on using new 

pedagogical strategies and methods to present the concepts as well as their practical application. 

However, in most cases the activities selected for the learning process are based on the same 

mathematical derivations that have been employed in the past. Sometimes the approach used to 

obtain certain equations is difficult for the students to understand and obscures the underlying 

concept. As a “solution” to this situation, the emphasis is shifted to the use the final formulas 

taking them as definitions. It is a good exercise for instructors to take a given derivation and 

explore if there are new alternatives that can be used to obtain the same formulas but that are 

easier for the students to comprehend. 
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The topic of in-plane principal stresses, principal directions and maximum shear stress for a state 

of plane stress is typically taught in undergraduate mechanics of materials and solid mechanics 

courses using the following approach. Equations for the normal and shear stresses on an inclined 

plane are obtained applying the principle of static equilibrium to an infinitesimal wedge element. 

In those equations, the normal and shear stresses on the inclined plane are expressed in terms of 

the components of the stress tensor with respect to a rectangular Cartesian x-y coordinate system 

and the angle that the outward normal to the inclined plane makes with the positive x-axis. Then, 

one of following two options is used. In the first and most common one, the derivatives of the 

equations for the normal and shear stresses on the inclined plane with respect to the angle used to 

define it are found and set equal to zero to find the angles corresponding to the maximum and 

minimum algebraic values for the normal and shear stresses at the point. Then, based on the 

expressions for those angles, equations to find the in-plane principal stresses and maximum shear 

stress are presented. In the second option, the equations for the normal and shear stresses acting 

on the inclined plane are combined to define Mohr’s circle and this graphic tool is used to find 

the desired equations. 

 

A survey of many textbooks for mechanics of materials and solid mechanics courses dating as 

far back as 1934 showed that, besides the two options stated above, other alternatives have not 

been employed. For example, Seely
1
, Timoshenko and MacCullough

2
, Laurson and Cox

3
, Marin 

and Sauer
4
, Higdon et al.

5
, Byars and Snyder

6
, Popov

7
, Bickford

8
, Craig

9
, Bedford and Liechti

10
, 

Gere
11

, Hibbeler
12

, and Riley et al.
13

, follow the approach of finding the maximum and minimum 

algebraic values of the expressions for the normal and shear stresses on the inclined plane using 

derivates. Other authors such as Beer and Johnston
14

 first present the concept of Mohr’s circle 

and then proceed to use it to determine the in-plane principal stresses, maximum shear stress and 

the orientations of the planes corresponding to those stresses. 

 

Textbooks intended for machine design courses usually include a brief review of how to find the 

in-plane principal stresses, maximum shear stress and the orientation of the planes corresponding 

to those stresses. Those books typically provide a summary of key formulas and only mention an 

approach that can be used to obtain them. Once again, the same two approaches discussed before 

have been employed. For example, Shigley
15

, Edwards and McKee
16

, and Hamrock et al.
17

, refer 

to finding the maximum and minimum of the expressions for the normal and shear stresses using 

derivates. Other authors like Juvinall and Marshek
18

, Spotts and Shoup
19

, Mott
20

, and Norton
21

 

use the Mohr’s circle concept. 

 

In this paper, an alternative approach to obtain the equations for finding the in-plane principal 

stresses, maximum shear stress and angles corresponding to the planes in which those stresses 

act is presented. Applying the idea of a phase angle that is frequently used in the analysis of 

signals or physical quantities involving linear combinations of sine and cosine functions of the 

same angle, the equations for the normal and shear stresses on an inclined plane are expressed in 

terms of a single trigonometric function involving the double of the difference between the angle 

that defines the orientation of the plane and a phase angle. Plots of the resulting expressions in 

terms the difference of those two angles allow finding in a straightforward fashion equations for 

the values and orientations of the planes for the stresses in question. 
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In the following sections a brief overview of the most common approach that has been used to 

teach this topic is presented. Next, the proposed approach is explained including the information 

that an instructor would present to the students during a class session. Finally, a brief preliminary 

assessment of the proposed approach is given and conclusions are presented. 

 

Traditional Approach 

 

For plane stress conditions, the typical starting point to derive equations to find the in-plane 

principal stresses, maximum shear stress and the orientation of the planes where those stresses 

act are the formulas for the normal and the shear stresses on an inclined plane. Those formulas 

are obtained by applying the principle of static equilibrium to an infinitesimal wedge element 

like the one shown in Fig. 1 and can be written as  
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where xσ , yσ , and xyτ  ( xyyx ττ = ) are the components of the stress tensor with respect to the 

x-y coordinate system, θ  is the angle (positive measured counterclockwise) that the unit outward 

normal to the inclined plane makes with the positive x-axis, and nσ  and ntτ  are the normal and 

shear stresses acting on the inclined plane. The angle θ  completely defines the inclined plane 

under consideration as well as the right-handed n - t  rectangular coordinate system associated 

with it. 

 

 
Figure 1. Normal and shear stresses on an inclined plane 
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The orientation of the planes in which the maximum and minimum algebraic values of the 

normal stress nσ  occur is found first. Using basic ideas from calculus regarding the relative 

maximum and minimum of a function of a single variable, the first derivative of the normal 

stress nσ  with respect to θ  is set equal to zero to obtain: 
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where pθ  is used to represent those angles for which the normal stress nσ  has a maximum or 

minimum algebraic value.  

 

The result of Equation (3) is used together with Equation (2) to show that the shear stress is zero 

in a plane where the normal stress has an algebraic maximum or minimum value. In addition, the 

planes in which maximum or minimum algebraic values of the normal stress occur are identified 

as principal planes, their corresponding angles are used to identify the principal directions and 

the maximum and minimum algebraic values of the normal stress are defined as the principal 

stresses. 

 

Since for any angle α  the tangent of 2(α +90
o
) is equal to the tangent of 2α , students are told 

that the possible solutions for Equation (4) correspond to two directions that are perpendicular to 

each other.  

 

Finally, using arguments such as the right-triangle presented in Fig. 2, Equation (1) is used to 

obtain the two in-plane principal stresses as 

 

 2
2

2,1
22

xy
yxyx

pp τ
σσσσ

σ +








 −
±








 +
=  (5) 

 

and the angles corresponding to 1pσ  and 2pσ  are identified as 1pθ  and 2pθ , respectively. 

 

A similar approach is followed to find the orientation of the planes in which the magnitude of the 

in-plane shear stress is a maximum as well as the value of that stress. Taking the first derivative 

of ntτ  with respect to θ  and setting it equal to zero, the following expressions are obtained: 
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where τθ  is used to represent those angles for which the shear stress ntτ  has a maximum or 

minimum algebraic value. 

 

 
Figure 2. Right-triangle used to find the expressions for the principal stresses 

 

Equation (6) is used together with Equation (1) to show that in the planes where the shear stress 

is an algebraic maximum or minimum, the normal stress is different than zero and equal to the 

average of the normal stresses xσ  and yσ .   

 

The fact that for any angle α  the tangent of 2α and the tangent of 2(α +90
o
) have the same 

value is used again to explain that the possible solutions for Equation (7) correspond to two 

directions that are orthogonal to each other. In addition, Equations (4) and (7) are compared to 

show that the angles τθ  and pθ  are 45
o
 apart since the tangent of pθ2  and the tangent of τθ2  

are negative reciprocals. 

 

Finally, a right-triangle similar to the one employed to find the in-plane principal stress is used to 

show that the maximum magnitude of the in-plane shear stress is given by: 
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Typically, most textbooks proceed to present graphical representations using stress elements to 

show the orientation of the planes corresponding to the maximum and minimum algebraic values 

of the normal and shear stresses and the relative location of those planes with respect to each 

other and the x-y coordinate system. 

 

Proposed Approach 

 

In the proposed approach to teach this topic, Equations (1) and (2) are used as the starting point. 

However, the derivations are done in a different way making use of the concept of a phase angle 

that is commonly employed in the analysis of signals or physical quantities that involve a linear 

combination of sine and cosine functions of the same angle. 

 

For the case of nσ  we propose that  
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where the magnitude C  is greater or equal to zero and β  is a phase angle. Expanding the right 

hand side of the above equation we obtain: 
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In order for both sides of the above equation to be equal, the following relationships need to be 

satisfied: 
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Using these expressions, we can find the value of C  as follows: 

 

 2
2

22222

2
2sin2cos xy

yx
CCC τ

σσ
ββ +







 −
==+  (14) 

 

P
age 12.76.7



 2
2

2
xy

yx
C τ

σσ
+









 −
=  (15) 

 

The value of the phase angle β  can be obtained dividing Equation (13) by Equation (12): 
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At this point, students are told that they need to be very careful while finding the inverse tangent 

using a calculator or the digital computer. The conventional inverse tangent function available in 

a calculator or a programming language will usually return an angle between 0
o
 and 90

o
 when the 

input argument is positive and an angle between -90
o
 and 0

o
 when the argument is negative. This 

corresponds to the correct answer when the denominator of Equation (17) is positive. However, 

when the denominator is negative, it is necessary to add 180
o
 to the value of the inverse tangent 

provided by the calculator or the digital computer to obtain the correct answer. Figure 3 shows a 

simple visual aid that the instructor can use in order to explain this point and that students can 

use to make sure that they find the correct angle. 

 

 
Figure 3. Visual aid for the determination of the correct value of the inverse tangent 

 

In the case of the expression for ntτ , we propose the following: 

yx σσ −
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where the magnitude D  is greater or equal to zero and φ  is a phase angle. Expanding the terms 

on the left hand side of the above equation we get: 
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In order for both sides of the above equation to be equal, the following relationships need to be 

satisfied: 
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Comparing the last two expressions with equations (12) and (13), we immediately conclude that 

CD =  and βφ = . 

 

Based on the above results, the equations for the normal and shear stresses on an inclined plane 

can be expressed as follows: 
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where the phase angle β  is given by Equation (17). 

 

Plots of nσ  and ntτ  versus the difference in angles βθ −  (see Figs. 4 and 5) allow to determine 

in a very straight forward fashion the maximum and minimum algebraic values for nσ  and ntτ  

as well as the orientation of the planes in which those stresses occur. 
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Figure 4. Plot of the normal stress nσ  vs. the difference in angles βθ −  
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Figure 5. Plot of the shear stress ntτ  vs. the difference in angles βθ −  
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Denoting the maximum and minimum algebraic values of the normal stress nσ  by 1pσ  and 

2pσ , respectively, one can easily see from Equation (23) and Fig. 4 that those quantities, which 

are the in-plane principal stresses, are given by: 
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Similarly, from Equation (24) and Fig. 5 it is easy to see that the maximum magnitude of the in-

plane shear stress ntτ  is given by: 
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From Fig. 4 it is evident that the planes in which the maximum and minimum algebraic values of 

nσ  occur correspond to o0=− βθ  and o90=− βθ , respectively. Thus, denoting by 1pθ  the 

angle corresponding to 1pn σσ =  and by 2pθ  the angle corresponding to 2pn σσ = , we have 

that βθ =1p  and o
12 90+= pp θθ .  

 

At this point one can mention to the students that the planes in which the principal stresses occur 

are known as the principal planes and the directions corresponding to those planes are known as 

the principal directions. Also, Fig. 5 can be used to show that for the planes corresponding to 

1pθθ =  and 2pθθ =  the shear stress ntτ  is equal to zero. 

 

Regarding the shear stress ntτ , Fig. 5 clearly shows that the minimum and maximum algebraic 

values for that quantity occur when o45=− βθ  and o135=− βθ , respectively. Denoting by 

1τθ  and the angle corresponding to pnt ττ −=  and by 2τθ  the angle corresponding to pnt ττ = , 

we have that o
11 45+= pθθτ  and o

12 135+= pθθτ . Based on these results, one can quickly see 

that o
12 90=− ττ θθ . In addition, Fig. 4 shows that for the planes corresponding to 1τθθ =  and 

2τθθ =  the normal stress nσ  is equal to 

 

 
2

yx
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which is the average of the normal stresses in the x-y plane.  
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The results obtained in the previous paragraphs are summarized in Table 1. The information 

contained in the table can easily be used to draw differential elements corresponding to the 

principal stresses and to the maximum in-plane shear stress. 

 

Table 1. Planes corresponding to the maximum and minimum algebraic values of nσ  and ntτ  

Plane βθ −  nσ  ntτ  

βθ =1p  o0  1pσ  0 

o
12 90+= pp θθ  o90  2pσ  0 

o
11 45+= pθθτ  o45  paσ  pτ−  

o
12 135+= pθθτ  o135  paσ  pτ  

 

It is interesting to note that Equations (23) and (24) can be very easily combined to obtain the 

equation of a circle. Thus they serve as a convenient starting point to introduce the concept of 

Mohr’s circle. For that purpose, Equation (23) is rewritten in the following form: 
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Squaring both sides of Equations (28) and (24) and adding the resulting expressions gives: 
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which is the equation of a circle in the nσ - ntτ  plane. 

 

Preliminary Assessment of the Proposed Approach  

 

At the university were the authors teach, the mandatory solid mechanics course sequence for the 

Mechanical Engineering undergraduate program is comprised of the following 3-credit courses: 

Introduction to Solid Mechanics (second semester of the sophomore year), Solid Mechanics (first 

semester of the junior year), and Machine Design I (second semester of the junior year). Usually 

only one section of each of those courses is offered every semester. The concepts and definitions 

corresponding to the topics of analysis of stress and analysis of strain are covered in the first 

course of the sequence.  

 

The proposed approach was used for the first time during the fall of 2006 in a class with 23 

students (all of them majoring in Mechanical Engineering). The information presented in the 

previous section was taught during a 50-minute lecture in which the students also learned how to 

draw properly oriented stress elements showing the in-plane principal stresses and the maximum 
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in-plane shear stress. Two examples were solved the following lecture and homework problems 

about the topic were given. 

 

In general, students did not have difficulties understanding the mathematical derivation. The 

trigonometric identities corresponding to the cosine and the sine of the difference of two angles 

were written on the board before the derivation was started. The graphs shown in Figs. 4 and 5 

together with Table 1 helped students to visualize the relative orientation between the planes in 

which the in-plane principal stresses and the maximum and minimum algebraic values of the in-

plane shear stress occur. Also, they were a useful aid for students to determine the correct sense 

for the maximum magnitude of the in-plane shear while drawing stress elements.  

 

Since figures similar to Figs. 4 and 5 were previously presented in the course while covering the 

topic of stress transformations for the case of axial loading, they provided a convenient way to 

link that special case with the more general one of a component subjected to a general state of 

stresses in two dimensions. 

 

Some students had difficulties finding the correct value of the inverse tangent in Equation (17) 

during homework assignments and in-class exams when the denominator was negative. They 

directly used the value of the inverse tangent given by the calculator without adding 180
o
. This 

particular aspect will need to be emphasized more in the future. 

 

Conclusions 

 

In this paper a new alternative to obtain the equations to find the values of the in-plane principal 

stresses, the maximum magnitude of the in-plane shear stress and the angles corresponding to the 

planes in which those stresses occur was presented. Although some of the ideas employed in the 

derivation are frequently used in other mechanics courses like mechanical vibrations, textbooks 

for mechanics of materials and solid mechanics undergraduate courses have not included the 

proposed approach despite its possible advantages from a pedagogical point of view.  

 

The first time the approach was used in class it was well received by the students. Additional 

assessment is needed to see if improvements can be made in the way the material is presented 

and to determine if it can help students to better retain the basic concepts covered for use in the 

next courses of the solid mechanics course sequence. Of particular importance is to have 

instructors at different universities use the proposed approach and provide feedback. 

 

Besides the topic under consideration, the proposed approach can also be used when the subject 

of strains analysis in two dimensions is presented in class. Once the equations for strain 

transformations have been obtained, identical steps to the ones presented here can be followed to 

derive the expressions for the in-plane principal strains, the maximum magnitude of the in-plane 

shear strain and their corresponding orientations.  
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