
2006-386: A NEW APPROACH IN MICROPROCESSOR/MICROCONTROLLER
COURSES/LABORATORIES MATERIAL DESIGN AND DEVELOPMENT

Steve Hsiung, Old Dominion University
STEVE C. HSIUNG Steve Hsiung is an associate professor of electrical engineering technology
at Old Dominion University. Prior to his current position, Dr. Hsiung had worked for Maxim
Integrated Products, Inc., Seagate Technology, Inc., and Lam Research Corp., all in Silicon
Valley, CA. Dr. Hsiung also taught at Utah State University and California University of
Pennsylvania. He earned his BS degree from National Kauhsiung Normal University in 1980, MS
degrees from University of North Dakota in 1986 and Kansas State University in 1988, and a PhD
degree from Iowa State University in 1992.

Jeff Willis, Utah State University
Jeff Willis Jeff Willis is a Software Engineer developing Mission Planning Software at Hill Air
Force Base in Utah. He earned a BS degree in Computer Electronic Technology and a Masters
degree in Computer Science from Utah State University. As part of his Master’s Thesis he
co-authored two papers on self-configuring, deterministically latent intercommunication
architectures for satellite payloads.

© American Society for Engineering Education, 2006

P
age 11.78.1

 A New Approach in Microprocessor/Microcontroller

Courses/Laboratories Material Design and Development

Abstract

Courses in microprocessors and microcontrollers are standard parts of the Engineering
Technology core curricula. The traditional course material developments include both lectures
and associated laboratory exercises. No matter how creative is the curriculum; it is usually
budgetary constraints that confine the creativity when developing new curricula. This limits
the freedom of the major approach in new course development.

This article demonstrates new course lecture and laboratories material development that
starts from ground up with both a hardware platform and simulation software design for
microprocessor/microcontroller related courses. It is not only very cost effective, but also does
not limit the instructor’s creativity when developing new curricula. The only obstacle is the
instructor’s imagination on courses and laboratories activities. This system can be
implemented at no cost to the department for sponsoring the courses. As a matter of fact, the
initial trials of this system have generated revenue, thereby supporting future improvements
and development needs.
 This new approach in course improvement starts with the design of a hardware platform
in a custom made evaluation board. It involves the system circuit and power supply design,
printed circuit board layout, prototype testing, and circuit board fabrication. The second step is
to design the simulation software for laboratory uses. The total design and development of
both software and hardware was a two year evolutionary process.

I. Introduction

 The 68HC11 EVB (evaluation board) was made by Motorola, Inc. in the 1980’s.9 Due
to the effort of Motorola University Support program, this EVB was very popular in most of
the universities and community colleges microprocessor/microcontroller related courses and
projects designs. When Motorola spin off their microprocessor division to Freescale Inc., 5 the
68HC11 EVB became very hard to obtain. The alternative EVB made by Axiom is more
expensive. 1 Another draw back is that the alternative board has limited functions as compared
to the original Motorola 68HC11 EVB.1,9
 In order to extend the use of the 68HC11 EVB and keep all 68HC11 CPU laboratory
exercises and project designs intact, the design/development of a modified Motorola 68HC11
development system became a reasonable choice. The objectives of this new approach are: (1)
sustain the use of the 68HC11 CPU, (2) keep the EVB hardware cost to a minimum, (3) make a
smooth transition from 8 bit CPU to 16 bit CPU applications, (4) give students ownership of
flexible hardware that can be used in several courses, and (5) relieve the financial burden on the
institution. After two trials in designing and testing of the hardware circuits and
implementation in the laboratory with students for two years, this hardware was named the
“CETHC11EVB2” and has been successfully used in several related courses.

 To minimize the students’ errors in utilizing the 68HC11 instructions and addressing
modes, a teaching assistant software simulator was also developed to be used with this
hardware. This software is not a comprehensive simulator and is not intended to compete with

P
age 11.78.2

commercially available packages, but it assists student learning, reduces mistakes, and
enhances trouble shooting skills.15 This simulator software is named as “CETHC11SIM” and
has been used in the beginning level microprocessor/microcontroller course.

II. The CETHC11EVB2 Hardware Designs

 The design of the hardware is based on the original Motorola HC11EVB structure that
uses the 68HC24 port replacement unit to bring all the available I/O ports to the user’s control
while still running 68HC11 (marked as U1) in its expended mode.9

1. Keeping All the Physical Available Pins of the 68HC11

 The 68HC11 has four different modes controllable through the MODA and
MODB pins: Single Chip Mode: Uses the 68HC11 in its independent state only and does not
allow for any external memory to be attached.2,8,11 Expanded Mode: Uses the 68HC11 along
with external memory (EEPROM, EPROM, RAM).2,8,11 This mode sacrifices general I/O
ports. Bootstrap Mode: Uses the 68HC11 for internal memory programming. Special Test
Mode: Used for 68HC11 factory test operations.7,8, Under normal conditions, if the 68HC11 is
running in expanded mode, all the standard 16 I/O pins must be used for address and data buses
for accessing external memory. Therefore, there is no general I/O available for the user to use
in intended applications. This is unacceptable in academic laboratory exercises. These 16 I/O
pins can be made accessible by forcing the CPU into single chip mode, but this restricts the
CPU’s available memory to the on-chip memory, which, in turn, restricts the user’s
programming code size. For laboratory instructional purposes, this is also undesirable. The
design of the CETHC11EVB2 uses the 68HC24 (marked as U7) to make all 16 I/O pins
available to the user and keep 68HC11 running in expended mode, thus allowing access of 8K
or 16K RAM, and 8K EPROM at the same time. This 68HC24 called a port replacement unit
was designed by Motorola for this particular purpose but was later discontinued.5,14 We are
able to get this important part from Tekmos, Inc. (base in Austin, TX) that continues
manufacturing it at a slightly higher cost.14

2. The Communications and Memory Map

 T It was not necessary to design the software for communication between the
CETHC11EVB2 and a PC, since Motorola already has a good user interface software called
BUFFALO that is stored in a 2764 (an 8K EPROM marked as U6), and decoded at address
$E000. The communication uses the SCI on the 68HC11 and the RS232 on a PC serial port.9
A simple MAX 232 chip (marked as U9) is used for the communication signal conversion
between TTL and ±12V levels, for downloading and debugging. The CETHC11EVB2 uses
9600 BAUD rate, 8 data bits, 1 stop bit, and no parity to communicate via a PC’s serial port.

The system is built around the structure specified by BUFFALO which keeps all the
interrupt vectors the same as 68HC11 families.7,8 This makes the system board flexible enough
to accept almost all available 68HC11 chips. There are jumper selections (J4, J5, & J6) to
choose 8K RAM (6264 static RAM) or 16K RAM (62256 static RAM) chip marked as U8.
This design gives the CETHC11EVB2 the flexibility to accept different RAM chips, depending
on the availability and cost.

P
age 11.78.3

3. The Power Supply and Connections

 There is also an on-board power unit that uses +5V regulator, 7805 (marked as U10), to
regulate any wall mount power plug that ranges between 6V and 12V DC down to +5V for the
operation of the system board and possible low power to the users’ external experimental
circuits. This allows the CETHC11EVB2 to be operated in any convenient place. There are
two 0.1” dual row receptacles (marked as J1 & J2) that are used for interfacing between the
CETHC11EVB2 and a user’s breadboard circuit or any prototype board. These connectors can
adapt any jumper wires to standard breadboard or any header pin size connectors to any user
interface application.

4. The Features

 This system is the second version of the HC11 evaluation board. It is an improved
design for enhancing lab experimentation and project use. Based on the suggestions from the
students, the CETHC11EVB2 has several modifications over its predecessor CETHC11EVB
and providing several advantages:

• CETHC11EVB2 uses an HC24 port replacement unit to gain access to Port B and Port C
I/O pins control.

• There is no need to change the HC11’s mode. The CETHC11EVB2 always remains in
Expanded Mode.

• CETHC11EVB2 has full access to external 8K or 16K RAM (Jumpers: J4, J5, & J6
selectable) while maintaining control over all I/O pins. This makes the system flexible
enough to accept different RAM chips based on the availability.

• CETHC11EVB2 can be used as a full target system development tool. The only required
changes in the developed software are the starting address and RAM access area when
moving to a single chip EEPROM or ROM or RAM memory.

• There are no problems in dealing with insufficient memory and mode changes on the
CETHC11EVB2 as compared to other EVBs that only operate the 68HC11 in single chip
mode.

• Most of the available 68HC11 family members can be used on the CETHC11EVB2.

There are different kinds of software can be used on this CETHC11EVB2, such as (1)

DOS based AS11.EXE for assembler and KERMIT.EXE for downloading,9 (2) a window
based AXIDE from Axiom,1 and (3) public domain window based MiniIDE.12 These are all
compatible with the CETHC11EVB2. The U8 socket accepts an 8K*8 byte or 32K*8 byte
RAM, the speed of which is irrelevant.

Figure 1 and 2 are the CETHC11EVB2 system circuits that use (a) external memories at
addresses $E000-$FFFF for the BUFFALO monitor program and $4000-$7FFF for the user
RAM, and, (b) internal memory at $0000-$00FF or $0100-$0FFF (depending on the type of
68HC11 family members) for interrupt vectors and user memory.7,8,9 Picture 1 presents a photo
of a fully assembled CETHC11EVB2 system board.

P
age 11.78.4

43

41

49

47

45

44

42

51

48

46

52

50

+5V

J2 CONN RECT 10x2
1
3
5
7
9
11
13
15
17
19

2
4
6
8
10
12
14
16
18
20

VRH

PB2_BUS0PB2_BUS1

PE7
VRL

PE2
PE1
PE0

PE5
PE4

PE3
PE6

U1 MC68HC11E9

VRH
52 VRL
51

PA3
31

PA4
30

PA5
29

PA6
28

PA7
27

PB0
42

PB1
41

PB2
40

PB3
39

PB4
38

PB5
37

PB6
36

PB7
35

PC0
9

PC1
10

PC2
11

PC3
12

PC4
13

PC5
14

PC6
15

PC7
16

PD0
20

PD1
21

PD2
22

PD3
23

PD4
24

PD5
25

E
5

VDD
26

G
N
D

1

XT
8

EX
7

RST
17

IRQ
19

XIRQ
18

MODB
2

PA0
34

PA1
33

PA2
32

PE0
43

PE1
45

PE2
47

PE3
49

PE4
44

PE5
46

PE6
48

PE7
50

AS
4

MODA
3

R/W
6

PB_BUS6

U2 74HC373

OE
1

GND
10LE

11
VCC

20

Q1
2

Q2
5

Q3
6

Q4
9

Q5
12

Q6
15

Q7
16

Q8
19

D1
3

D2
4

D3
7

D4
8

D5
13

D6
14

D7
17

D8
18

PB_BUS[0..7]

PB_BUS7

U3 74HC138

G
N
D

8

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

A
1

B
2

C
3

G2B
5 G2A
4 G1
6

V
C
C

1
6

U4 MC34064

IN
2

RST
1

G
N
D

3

D1

LED

J4
JUMPER
1 2

PC_BUS0

+5V

PA1

PC_BUS2
PC_BUS1

C3
.1uF

PE4

C

R1I
10K SIP 10 HE

1
0

PC_BUS3

R4

680

PC_BUS4
PC_BUS5

PC_BUS7
PC_BUS6

PC_BUS[0..7]

PB_BUS5
PB_BUS6

PB_BUS4

PB_BUS7

PB_BUS2
PB_BUS3

PB_BUS1

PB_BUS[0..7]

PB_BUS0

PA4
PA2

PA6
PA5

PA3

Y3

PA7

R2 47K

Y7

+5V

PE3

PE5
PE6

+5V

PE1

PE7

PE0

+5V

PE2

SW1

SW_PB_SPST

+5V

RESET

PA0

IRQ

J3

CONN JACK PWR
3
2
1

AS

AS

PD5

R/W

PD4

PC_BUS5

PC_BUS2
PC_BUS3

PC_BUS1
PC_BUS0

PC_BUS6

PC_BUS4

Y1

8.0 MHZ

PC_BUS[0..7]

PC_BUS7

PD3
PD2

R13 10M

RXD

C4
22pF

C5
22pF

MODA

XIRQ

C2
.1uF

C11
.1uF

+

C1

1uF

EX
XT

XTEX

TXD

VDD

E

C R1A

10K SIP 10 HE

+5V

C R1B

10K SIP 10 HE

3

C

R1C
10K SIP 10 HE

4

C

R1D
10K SIP 10 HE 5

PB_BUS5

MODB

E

C

R1E
10K SIP 10 HE6

C12
.1uF

C

R1F
10K SIP 10 HE

7

U10 LM7805C/TO220

IN
1

OUT
3

GND
2

VRL

VRH

+C17

100uF

+C18

100uF

Address_BUS0

Address_BUS2
Address_BUS1

Address_BUS5
Address_BUS4
Address_BUS3

Address_BUS7
Address_BUS6

Address_BUS[0..7]

IRQ

MODB

EX

MODA

XIRQ

XT

RXD
TXD

PC2_BUS5

STRA
STRB

PC2_BUS7PC2_BUS6
PC2_BUS4

PC2_BUS0
PC2_BUS3PC2_BUS2
PC2_BUS1

J1 CONN RECT 20x2
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

PB2_BUS7
PB2_BUS4PB2_BUS5
PB2_BUS6

PB2_BUS3

RESET

VDD

PB2_BUS2

PD2
PD4

PA6

PD3
PD5

PA2

PA7
PA5

PA0PA3
PA1

PA4

E

Figure 1. CETHC11EVB2 System Circuit 1

OR

62256 (J5 on, J4&J6 off, $4000-$7FFF,

16K)

6264 (J5 off, J4&J6 on, $6000-$7FFF, 8K)

P
B
_
B
U
S
7

P
B
_
B
U
S
5

P
B
_
B
U
S
6

P
B
_
B
U
S
3

P
B
_
B
U
S
4

P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

+5V

Address_BUS2

Address_BUS6

Address_BUS[0..7]

Address_BUS4

U9 MAX232

C1+
1

C1-
3

C2+
4

C2-
5

V
C
C

1
6

G
N
D

1
5

V+
2

V-
6

R1OUT
12

R2OUT
9

T1IN
11

T2IN
10

R1IN
13

R2IN
8

T1OUT
14

T2OUT
7

Address_BUS5

Address_BUS7

Address_BUS1

Address_BUS3

Address_BUS0

U5A

74HC14

1 2

1
4

7

U5B

74HC14

3 4

1
4

7

U5C

74HC14

5 6

1
4

7

U7
MC68HC24

N
/C
1

1
IO
T
E
S
T

2
A
1
5

3
A
1
4

4
A
1
3

5
A
1
2

6

STRA
7

PC0
8

PC1
9

PC2
10

PC3
11

N/C2
12

PC4
13

PC5
14

PC6
15

PC7
16

VDD
17

S
T
R
B

1
8

P
B
7

1
9

P
B
6

2
0

P
B
5

2
1

P
B
4

2
2

N
/C
3

2
3

P
B
3

2
4

P
B
2

2
5

P
B
1

2
6

P
B
0

2
7

IR
Q

2
8

VSS
29AD7
30AD6
31AD5
32AD4
33N/C4
34AD3
35AD2
36AD1
37AD0
38RESET
39R

/W
4
0

E
4
1

A
S

4
2

M
O
D
E

4
3

C
S

4
4

TXD

PB_BUS5

RXD

E

Address_BUS5

Address_BUS7

+ C7
0.1uF

+

C6
0.1uF

+ C8
0.1uF

+C9 0.1uF

+

C10
0.1uF

+5V

PB_BUS[0..7]

PB_BUS3

S
T
R
B

Y7

PB_BUS4

Y3

+5V

+5V

Address_BUS0Address_BUS[0..7]

Address_BUS1

Address_BUS4

Address_BUS2
Address_BUS3

PB_BUS[0..7]

PB_BUS2

PB_BUS0

PC_BUS7
PC_BUS6

PC_BUS0

PC_BUS2

PC_BUS5

PC_BUS1

PC_BUS3

STRA

PC_BUS4

IR
Q

RESET

R
/W

A
S

PC_BUS[0..7]

Address_BUS6

R/W

+5V

PC_BUS[0..7]

U6 2764 ($E000-$FFFF)

A0
10

A1
9

A2
8

A3
7

A4
6

A5
5

A6
4

A7
3

A8
25

A9
24

A10
21

A11
23

A12
2

O0
11

O1
12

O2
13

O3
15

O4
16

O5
17

O6
18

O7
19

VCC
28

GND
14

OE
22

PGM
27

VPP
1

CE
20

P
B
2
_
B
U
S
7

P
B
2
_
B
U
S
4

P
B
2
_
B
U
S
2

P
B
2
_
B
U
S
1

+5V

PB2_BUS[0..7]

+5V

P
B
2
_
B
U
S
6

P
B
2
_
B
U
S
0

PC2_BUS[0..7]

P
B
2
_
B
U
S
5

P
B
2
_
B
U
S
3

+5V

PC_BUS2
PC_BUS1
PC_BUS0

PC_BUS3

PC_BUS5
PC_BUS6

PC_BUS4

PC_BUS7

C15
.1uF

C14
.1uF

C13
.1uF

U8

A0
10

A1
9

A2
8

A3
7

A4
6

A5
5

A6
4

A7
3

A8
25

A9
24

A10
21

A11
23

A12
2

A14
1 A13
26

VCC
28

G
N
D

1
4

OE
22

WE
27

CS
20

I/O0
11

I/O1
12

I/O2
13

I/O3
15

I/O4
16

I/O5
17

I/O6
18

I/O7
19

E

C19
.1uF

+5V

PC2_BUS2

PC2_BUS4

PC2_BUS3

PC2_BUS0

PC2_BUS6

PC2_BUS1

PC2_BUS7

PC2_BUS5

+5V

PB_BUS3

PB_BUS[0..7] PB_BUS0
PB_BUS1

PB_BUS4

PB_BUS2

PC_BUS4

PC_BUS6
PC_BUS5

PC_BUS7

PC_BUS2

PB_BUS1

PC_BUS3

PC_BUS1

PC_BUS[0..7]

PC_BUS0

J5 JUMPER
1 2

J6 JUMPER
1 2

C

R1G
10K SIP 10 HE

8

C

R1H
10K SIP 10 HE

9
Figure 2. CETHC11EVB2 System Circuit 2

P
age 11.78.5

Picture 1. CETHC11EVB2 System Board

III. The 68HC11 Simulator Designs

The CET11SIM simulator is a simple and easy to use tool designed for Motorola’s

MC68HC11 microcontroller. CET11SIM allows users to gain a better understanding of the
architecture and operations of the HC11 microcontrollers. It takes an assembled listing file and
allows a user to step through each individual operation and display all hardware registers and
memory changes accordingly; this gives the user a perspective on how the file they created
interacts with the HC11 hardware.

Debugging a piece of software can leave a person feeling discouraged and sometimes
confused. With assembly level programming this is more common than not, especially for
students who are first time learners and novice programmers. The majority of the time the bug
is a simple syntax error, such as inadvertently using an incorrect addressing mode. Such errors
are difficult to diagnose even for the professional developer. Debugging these errors is a time
consuming process. With every modification to the program the user must assemble and export
the program to the microcontroller, and then execute and examine the results for clues, which
hopefully will lead to a solution.2

The CET11SIM application is designed specifically for Motorola’s MC68HC11 eight
bit microcontroller series. The CET11SIM simulates the HC11 by performing all of the HC11
operations and then displaying the results of each operation. This allows each HC11 instruction
to be verified and corrected immediately before it is downloaded to the HC11’s internal/
external memory for verification. The repeated time-consuming process of exporting the HC11
program to the microcontroller, executing and then verifying the results can be nearly
eliminated.

P
age 11.78.6

1. Overview of Operations

CET11SIM operation consists of opening and loading a list file to the CET11SIM. The
list file, a text file, is a product of the assembling process. The programmer creates this text file
which contains the operations to be performed by the microcontroller. The text file is an input
file for the assembler. The assembler generates a hexadecimal file (that will be loaded to the
memory of the microcontroller for execution) and the list file. The list file displays the
relationship between the user created text file and the hexadecimal file executed by the
microcontroller. The list file also displays any assembly errors to the user.2,7,11 The assembler
adds to each line a line number, the hexadecimal value of each opcode, and its arguments, as
shown in Figure 1. CET11SIM displays this file to the user with the next line to be executed
highlighted in green. A break point is registered by clicking on the line where the break point
is to be established, at which point the first four characters of that line are highlighted in red.

A user can press either the “Step” button to execute each HC11 operation individually
or the “Run/Continue” button which will execute successive operations until a break point is
encountered. At this point the user may step through each individual HC11 operation. After
each operation is executed the results can be viewed in hexadecimal (default), decimal or
binary. There is a dedicated text box for each HC11component. These include accumulators
A, B, and D; index registers X and Y; the Stack Pointer (SP), the Program Counter (PC) and
the Condition Code Register (CCR).2,4,9

The contents of the HC11’s memory are displayed in a table that indicates an address
and the address contents. Each time a value in memory is modified it is highlighted in yellow,
which makes finding and viewing pertinent memory locations easier.

The IRQ interrupt is the only interrupt supported by the CET11SIM. The user triggers
an IRQ interrupt by clicking the “INT” button. This causes the program counter to load the
dedicated interrupt vector address and perform the operation indicated by the values at that
address. If the memory contents at the interrupt vector address contain appropriate instructions,
the interrupt service routine will be executed. 2,11 This gives the user the ability to examine a
process that is usually hidden.

2. Operating Instructions

The proper operations of the CET11SIM simulator can be classified in the following
three steps.

(1) Step1: Java’s Run-Time Environment Installation

The only system requirement is that Java’s virtual machine is properly installed on the
machine where the application is to be executed. The Java virtual machine or “Run-Time
Environment” can be downloaded at http://java.sun.com/getjava/. CET11SIM was developed
using the Java run-time environment version 1.3.1_02 and tested up through version 1.4.2_06.
The CET11SIM executable file is a Java jar file.3,13 Once the Java runtime environment is
installed, the jar file can be placed in any directory to be executed. To execute the jar file
double click on the file. The application will then start.

(2) Step2: Creation of a List File

A list file contains a line number, a hexadecimal address and the hexadecimal values of

P
age 11.78.7

the opcodes. All are used as input for the CET11SIM to model the current state of the HC11
microcontroller. The list file is a text file that can be created when an HC11 program is
compiled or assembled. The “.s19” file is a hexadecimal file that is created with the specific
purpose of being executed on the HC11 hardware. Most assemblers generate a list file by
default. The user can generate a list file from the command line using “as11 filename -l >
filename.lst”.9 This redirects the list file output of the as11 command to a destination file. The
generated list file can then be used with CET11SIM.

There are many freely available HC11 assemblers that will automate this process.
These Microsoft Windows based assemblers are available from web sites, such as AxIDE at
http://www.axman.com/files/Other/AxIDE/AxIDE363.exe or MiniIDE at
http://www.mgtek.com/miniide/Download. Either of these assemblers will assemble HC11
source code and generate the “.s19” and “.lst” files.1,12

(3) Step3: Execute the CET11SIM Applications

To execute the CET11SIM, simply double click on the executable jar file. To open a
list file click the "Open list file" at the top of the application, this will bring up a dialog box.
Select the list file you would like to debug and open that file. The application will appear as
shown in Figure 3.

Figure 3. Display Screen of CET11SIM

After setting a break point and stepping through a few instructions, the CET11SIM
application will look similar to Figure 4.

P
age 11.78.8

The line highlighted in green will be the next line to execute. CET11SIM uses the
“ORG” opcode to establish an entry point for the HC11 application, the first opcode following
the “ORG” instruction will be the first executed.2,7,16

The “Step” button executes the highlighted line, updates the HC11 and the display.

The “Run/Continue” button executes successive lines until a break point or the end of the
program is encountered.

Only one break point is allowed, which can be changed at any point. When a new break
point is recorded the old break point will be discarded. To place a break point, just point and
click on the line of the file where the break point is desired. The break point display area
shows the line number where a break point has been recorded. The line number will also be
highlighted in red to indicate the break point.

The values in the registers are displayed by default in hexadecimal, except for the
Condition Control Register (CCR), which is displayed in binary. The decimal button changes
the HC11's displayed values to a decimal representation. The binary button changes the
HC11's displayed values to a binary representation. The values will be returned to a
hexadecimal representation after the next line is executed.

Figure 4. Single Step through CET11SIM

P
age 11.78.9

The area below the "Step" and "Run" buttons is a display of the current contents of the
HC11's memory. When these values are changed, the changed address and value are
highlighted with yellow to make it easier to verify the program’s operation.

The INT (Interrupt) button triggers the Program Counter (PC) to load $00EE, which is
the IRQ Interrupt vector. The opcode at this address is executed. If the user has properly
linked their Interrupt Service Routine with the interrupt vector table the first line of the
Interrupt Service Routine will be the next line to execute. The following is an example of the
contents of the interrupt vector table.7,9,12

Address Contents Description
------- -------- -----------
$00EE $7E Jump Instruction
$00EF ISR address High byte location of Interrupt Service routine (high byte)
$00F0 ISR address Low byte location of Interrupt Service routine (low byte)

Figure 5 is an example of what might be seen immediately following pressing the IRQ
button. Notice the contents of all registers have been pushed onto the stack.

Figure 5. Interrupt Operation in CET11SIM

At any point a new list file may be opened to debug. This will overwrite the previous

data objects used to model the HC11 and create a new model from the program loaded.

P
age 11.78.10

3. The Development

The CET11SIM was developed using a broad and simplistic approach. It is designed

specifically to target university students. Colleges around the country utilize many different
types of computer systems, so a platform is needed that is independently executable.
CET11SIM is not designed to meet the needs of a commercial user so execution speed was not
a primary concern; these two factors led to the use of the Java programming language.

Java is similar to C++ in that they are both object oriented programming languages and
they follow the same syntax guidelines. They both allow the development of unique data
structures, making them very versatile. However, there are a few things that differentiate the
two. Java is platform independent meaning once the code is compiled it can be run on any
computer with the Java virtual machine. Java is much more reliable than C++ with its built in
exception handling. Exceptions allow a program to continue running even after an error has
occurred. For example if a program is expecting a specific file format for input and an
incorrect format is encountered, the program will create an exception. This means the program
will stop executing the code to input the file and return to the state previous of the file being
input. Java does not allow multiple inheritances which removes a great deal of complexity.
Java does not use pointer syntax. Everything is either an object or a primitive such as float,
integer or character.3,13 This makes Java code easy to read and write. Java is free to any non-
commercial user and its documentation is easy to understand.

4. Software Structure

The main component of the CET11SIM is the window or frame. Its job is to take

information input by the user and route that information to functions that will handle the
request. Java’s JFrame class is used as a base class that was extended to fit the project’s
specifications. The JFrame object controls how each component inside the frame is displayed,
how messages between components are handled and the actions that result when an event such
as a mouse click occurs. Sub-components such as the text area, buttons, text fields, and the
menu all reside within the JFrame object. 3,13

The key component in the JFrame class is the TextArea class. This class displays the
list file that the HC11 simulator will be executing. The TextArea class interacts with the user
by allowing break points to be set and displayed and by displaying the next line of the list file
to be executed. The TextArea object is also responsible for inputting the file to be displayed.
3,13 As the file is input, information is extracted and stored to develop a model of the current
state of the HC11.

The Program class is an abstraction of the HC11 program being debugged. It stores
information about the HC11 program that has been loaded for simulation. The program object
is the central link between all other objects. It must maintain a data structure that links a line
number in the TextArea object with an HC11 memory address. This link is utilized when a
Jump or Branch instruction is encountered. The opcode instruction contains an address of the
memory location to jump to, at which point the simulator must jump to the corresponding line
in the list file and display to the user that it is the next statement to execute. This is
accomplished with a Hash Table object that uses the address as the key and a Statement object
as the value. The program object also maintains an array of the HC11’s memory contents. P

age 11.78.11

The Statement class is used to organize each of the list file’s statements. The statement
object breaks a line down to its relevant components such as the HC11’s corresponding
memory address, the opcode, the data and the line number.

The HC class holds the abstraction for the HC11 object. This includes single byte
accumulators A, B, and D, and the Condition Code Register (CCR), and double byte registers
X, Y, the Program Counter (PC) and the Stack Pointer (SP).2,6,8,16 The SP is a virtual stack that
represents the contents of the actual stack. The HC class also includes all the
operations/methods needed to simulate an actual HC11. Included in the HC11 class is a
“memory table” which is used to display the current memory contents of the HC11. The table
object uses the program’s memory array to fill in the table. The HC11 classes as well as the
majority of the classes contain a utility class which performs basic operations such as
converting a hexadecimal string to a decimal or binary value.

The Opcode class contains all the implementations of the HC11’s operations. A “fetch”
call is made from the HC11 class, which determines the appropriate opcode function to be
executed, calls/executes the function, and updates the pertinent components of the HC11 class.

The description of the software implementation of CET11SIM is also presented in a
flow chart format in Figure 6.

Load S19 File

Is file valid
ORG/org found

No

Yes

1- Create Virtual Program
2- Display S19 File

STEP

1- Check PC contains a valid Address
2- Pull Opcode Statement from that address

3- Determine Opcode operation to be performed
4- Perform Operation

6- Increment PC to next Memory location to
execute

RUN /
CONTINUE

BREAK
POINTS

1- Check that line is valid
2 - Remove previous break Points

3- High-light in red established break point
4- Display Line number of current break

point

RUNNING - (Wait for User Input)
1- Display current contents of HC’s Components

7- Highlight next line to execute
2- Allow Break Points to be established

3- Allow Run
4- Allow Step

5- Allow Interrupt to be triggered

Break Point
Found

YES

NO

1- Check PC contains a valid Address
2- Pull Opcode Statement from that address

3- Determine Opcode operation to be performed
4- Perform Operation

6- Increment PC to next Memory location to
execute

Figure 6. Software Structure of CET11SIM

P
age 11.78.12

IV. The Microprocessor/Microcontroller Related Course Implementations

 The implementation of the CETHC11EVB2 and CETHC11SIM can be adapter to
different levels of the microprocessor/microcontroller courses. By requiring students to own
the EVB system board, they are required to build it from components to a complete assembled
functional board. It is not only an interesting and challenging task at the beginning of the entry
level class, but it also enhances student understanding of the system in future classes. Since
each student processes his/her own board, there is no borrowing/lending of the system board,
and the maintenance expenses are nonexistent. Additionally, the simulator software can be
simply downloaded from the department’s server computer. Table 1 summarizes various
exercises of hardware and software implementation in different level classes.6,10

uP/uC

Class

Level

Related Topics/ Course Contents CETHC11EVB2

/ CETHC11SIM

Entry Assembly Programming, Addressing Mode, Hardware
Architecture, Subroutines, Stacks, Basic Math Routines,
Simple I/O Controls, Interrupts

CETHC11EVB2
& CETHC11SIM

Medium Advanced I/O Controls, Different Number Systems/Codes
Conversations, Timer Functions, ADC Controls, Stepper
Motors Controls, DC Motors Controls, Parallel Interface,
Serial Interface (SPI, SCI, Bit Banning), Display Units (LCD),
Keypad, Card Reader, Communications

CETHC11EVB2
& CETHC11SIM

High Parallel and Serial Communication Protocols, Multiple
Processor Communications, HC11 to PC Interfacing, 16/32 bit
Precision Multiple and Divide Routines, External Serial
Memories Interfacing/Storage, Wireless Communications,
System Integrations/Designs

CETHC11EVB2

Project Combine of All the Topics to a Useful Application Project CETHC11EVB2

Table 1. The Related Courses with CETHC11EVB2 and CETHC11SIM

 Certainly, there are no practical limitations on the use of this hardware and software. If
there are limited numbers of classes’ available, topics can be combined into two courses, or
some subjects can be eliminated.6

V. Conclusion

 Although the development of a new microprocessor/microcontroller educational system
was a challenging task to the instructor, it is a worthwhile effort and pays off in the future for
years to come. It has several attributes that make it attractive to students, administrators, and
instructors.

From the students’ point of view, the requirement to purchase all the components and
assemble, solder, and test of the final system board is a valuable learning experience. The
soldering experience is a fringe benefit that students do not normally receive as part of an
engineering technology program. It is impractical to offer one particular course to teach
student soldering and de-soldering skills but it is a common practice in real world in either

P
age 11.78.13

design or application. This assembling/trouble shooting experience provides them a valuable
lesson and they are determined to be successful. This is a perfect example of competence
based learning experience and students are absolutely motivated. Instructional materials are
widely available to the student through Motorola’s web site and instructors’ hand outs.
Additionally, requiring students to pay for the parts and the system board ($80.00) and using
reference books instead of a required text book was preferable to the students.
 From the administrators’ point of view, there is only the initial cost in the development
stage of the system board and simulator. After the design and development is finalized, there
are no additional costs such as maintenance or replacement of any of the system boards. Since
each student owns his/her own system board, it is guaranteed that the boards will be treated
with care. Even if there is anything malfunctions in the system board, having previous trouble
shooting experiences enables them to fix the problem and the cost is just the component
expense. At the departmental level, there are no additional costs except for the basic lab
instrumentation.
 From the instructors’ point of view, it is relieved from the task of maintaining and
repairing system boards, and their associated costs. This also gives instructor flexibility in
implementing lecture and lab material that is based on the manufacturer’s data sheets, not a
textbook. The simulation software is an excellent teaching aid that eliminates many mistakes
and associated trouble shooting time before the student actually runs his/her software on the
CETHC11EVB2.
 After two years of implementing this hardware and software system, feedback and
comments from the students who use it in their microprocessor/microcontroller courses is
totally positive. It is a great access to the students who use it in their senior project designs.
With this system board, they can basically do their design work anytime and anyplace.
Additionally, it has been observed that students do not sell the system board after they have
completed their classes or degree. It seems like a proud trophy that students want to keep for
years to come.

Having students go through the process of building the system board and using the
simulator, has triggered students interest in how the board operates, and the function of the
codes in the simulator. In those microprocessor/microcontroller classes, there are interesting
topics students asked about the system that they built and software they used, which provide the
instructor with additional ideas for project, experiments, and teaching methods. This
integration provides interesting concepts that offer students a better understanding of the links
between hardware and software and the potential microcontroller applications at future
workplaces.

VI. Bibliography

1. Axiom Manufacturing CME-11E9-EVBU MC68HC11 Low Cost Development System, Available:
 http://www.axman.com/, January, 2006.
2. Cady, Frederick, M. and Sibigtroth, James M. Software and Hardware Engineering,Motorola M68HC11.
 Oxford, NY: Oxford University Press, 1997.
3. Cay, Horstmann, S. Core Java 2, Volume 2 – Advanced Features. Englewood Cliffs, NJ: Prentice-Hall, 2001.
4. EVBU, Available: http://www.programmersheaven.com/zone5/cat26/31763.htm, September, 2005
5. Freescale, Inc., Available: http://www.freescale.com/webapp/sps/site/ homepage.jsp?nodeId=06, January,

P
age 11.78.14

 2006.
6. Gendrachi, Thomas. “Teaching Effective Troubleshooting in the Microprocessor Lab”. Proceedings of the
 2004 ASEE Annual Conference and Exposition, Salt Lake City, Utah, June 20-23, 2004.
7. M68HC11 Programming Reference Guide. MC68HC11EGR/AD. Motorola, Inc., 1991
8. M68HC11 Reference Manual. MC68HC11RM/AD Rev 3. Motorola, Inc. 1991.
9. M68HC11 Evaluation Borad User’s Manual. M68HC11EVB/D1. Motorola, Inc, 1986.
10. Mastronardi, Andrew, Montanez , Eduardo. “Microcontrollers in Education: Embedded Control Everywhere
 and Everyday”. Proceedings of the 2005 ASEE Annual Conference and Exposition, Portland, Oregon, June
 12-15, 2005.
11. Miller, Gene H. Microcomputer Engineering. Englewood Cliffs, NJ: Prentice-Hall, 1993.
12. MiniIDE, Available: http://www.mgtek.com/miniide/, January, 2006.
13. Sun Java website, Available: http://www.java.sun.com
14. Tekmos, Available: http://www.tekmos.com/standard_products/TK68HC24.htm, January, 2006.
15. THRSim11, Available: http://www.hc11.demon.nl/thrsim11/info.htm, September, 2005
16. Wray, W, Greenfield R., and Bannatyne R. Using Microprocessors and Microcomputers, the Motorola

 Family. Fourth Edition, Englewood Cliffs, NJ: Prentice-Hall, 1999.

VII. Biography

P
age 11.78.15

