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Abstract 

This paper assumes the importance of educating our engineering students to question, test 
and verify “answers” to all of their problem solutions.  It presents an approach currently 
practiced by the authors in teaching an introductory mechanics of materials course.  In problem 
solving, emphasis is placed on: (1) writing the governing equations in symbolic form with a bare 
minimum of algebraic manipulation, (2) solving the equations with a commercially available, 
student choice, computer equation solver and (3) most importantly, developing and 
implementing test case scenarios to verify the validity of the problem solution. There are three 
major advantages to this approach.  First, the development of the equations in symbolic form 
requires the students to focus more on the physics of the problem.  Second, the use of the 
computer equation solvers eliminates tedious and often error prone algebraic manipulation.  
Third, the test case scenarios suggested for verification of the “answer” force the student to 
consider limiting, “known result”, solutions of the problem. Throughout the course, the students 
apply this approach to homework and project activities.  Initially they are given the test 
scenarios, but, with practice, they learn to create their own.  This paper presents two example 
problems to demonstrate the approach. 
 
Introduction 

 
In a homework assignment, the ultimate goal for a majority of undergraduate engineering 

students is simply to obtain the “answer” in the back of the book.  A common approach is to 
search the textbook chapter for the applicable formula or equation and immediately insert 
numbers and calculate an answer.  This approach is often successful with problems that require 
few equations, especially if the equations can be solved sequentially or are easily manipulated to 
isolate the unknown variable.  The unfortunate aspect of this is that students may spend very 
little time focusing on the basic fundamental physics of the problem and, generally, no time at all 
on the very important verification of the “answer”!  As problems become more complex, with 
increased numbers of simultaneous equations, such as with statically indeterminate problems, 
this approach is laborious and fraught with opportunities for equation manipulation errors.  As a 
result, introductory course instruction and textbooks do not involve these types of problems.  
This paper presents the authors’ attempt to prepare the student for problems of greater 
complexity with emphasis not only on the physics of the problem, but also on the verification of 
the “answer”.  These two issues are stressed in activities in-class (examples, quizzes and tests) 
and out-of-class (reading, homework problems and projects).  The foundation of this approach is 
the formulation of all of the basic governing equations in symbolic form, with no algebraic 
manipulation to isolate unknowns, before entering numeric data.  The practicality of this 
approach is possible because of readily available equation solver computer programs. 
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Advantage and Challenges of a Symbolic Formulation 
 
 Formulating a solution in symbolic form based on a general problem statement is a 
common approach in introductory mechanics of materials textbooks when few equations are 
involved1-19.  As problems become more complex, and many simultaneous equations are 
involved, the textbooks provide little or no guidance on the solution1-19.  Teaching the student to 
model a general physical problem with the fundamental equations written in symbolic form, with 
no variable values specified, causes the student to more fully concentrate on the fundamental 
principles taught in the course.  Introducing the computer equation solver tool to solve the 
equations removes the necessary manipulation of the equations to isolate the dependent 
variables.  Finally, teaching the student to examine and test the answer becomes a critical goal in 
the course.  The advantage of the approach being presented here is the natural inclusion of 
emphasis on the following: 
 
1.  Physics of the Problem.  The primary goal of a course should be to bring the student to a 

thorough understanding of the fundamental principles governing the physics of the topic. The 
ability to define a problem’s physical model and to construct the corresponding mathematical 
formulation of the model should reflect this understanding.  Having written the governing 
equations, any convenient mechanism may be employed to execute a numerical solution. 

 
2. Engineering Tools.  The students gain a working familiarity with one or more of the available 

equation solving programs, and it is stressed that the programs, as well as the general 
approach to problem solving, has a carryover to their other courses. A symbolic formulation 
can be naturally and easily solved with the modern engineering tools such as Mathcad, 
MATLAB™ and TK Solver.    Furthermore, these engineering tools reduce to a minimum the 
required algebraic manipulation of the equations because there is no need to isolate the 
dependent variable or to reduce a set of simultaneous equations to one equation.  Redefining 
the role of the dependent and independent variables is a trivial task. 

 
3. Problem Complexity.  Coupling symbolically derived equations with an engineering 

computer equation solver tool permits the solution of problems more complex than 
traditionally encountered in the first mechanics of materials course. 

 
4. Verification of the Answer.  With equations written in symbolic form, a readily available 

computer equation solving program permits an effortless examination of the effects of 
changes in input variables.  The ability to easily recalculate a solution allows the student to 
explore general and limiting cases for the problem. This leads to implementation of tests 
which may be compared with expected and/or known responses. This provides greater 
solution reliability.  (The students are reminded that it is the responsibly of a professional 
engineer to verify his/her solution.) 

 
5. Design.  With a strategy incorporating a computer equation solver with the ‘raw’ 

fundamental symbolic equations, design and redesign activities can be naturally introduced in 
the first mechanics of materials course.  The authors’ aim in this introductory course is to 
introduce design through short, simple and well-defined projects.  As the student progresses 
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to more advanced courses, i.e., machine design, structural design, etc., projects become 
lengthier, open-ended and difficult, leading to the capstone design experience. 

 
The implementation of this approach carries with it the following significant challenges: 
 

1. Symbolic Equations.  The difficulty in requiring a symbolic approach with sophomore and 
junior engineering students is motivating them to write a complete set of governing equations 
in symbolic form before substituting numerical values. They just are not familiar with 
formulating problems this way.  Their training in high school and college has primarily 
involved sequential solutions of the applicable formulas. The good news is that, for many 
students, after sufficient practice, the wisdom of the procedure becomes quite apparent. 

 
2. Computer Equation Solvers.  The second challenge is motivating the students to learn a 

computer equation solver program if this is their first exposure to such a tool.  They resist 
learning how to use the program on ‘simple’ problems when they can solve it quicker by 
hand.  When suddenly faced with the more complex problems, the unprepared student 
becomes quite frustrated!! 

 
3. Testing the Solution.  The third challenge is getting them to test the solution.  They are 

generally quite content with any answer that will get them partial credit.  Making the effort to 
develop test cases ‘takes too much time’!! 

 
What About Using an Equation Solver as a Blackbox? 
 

The proposed approach requires that students use an engineering equation solver tool 
such as Mathcad, MATLAB™ or TK Solver to solve the equations.  Many instructors feel that a 
major disadvantage of using any equation solver is the blackbox input/output response and lack 
of contact with the solution procedure.  This is a very justified concern and is one that the 
authors share.  However, with intelligent use of intermediate and final result tests, the computer 
program is a much more reliable calculation device than a calculator.  We must appreciate, 
however, that our students will be entering an arena filled with computers and easily run 
software.  What must be addressed is the attitude of the program user.  Although the authors 
believe that students must understand how to solve a system of equations, it is impossible, 
nevertheless, to expect them to know exactly how all programs they will use are coded.  An 
important element of a student’s education must include a reflex suspicion of program results 
and an understanding of the need and the ways and means to check results with alternative 
methods.  This is what is expected when a student graduates and becomes a professional 
engineer in industry.  Why not expect the student to be a professional engineer during their 
academic career? 
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Points Emphasized in a Symbolic Formulation 
 

The authors emphasize the following points when formulating a problem symbolically for in-
class and out-of-class exercises: 

 
• Definition of Variables and their Fundamental Dimensions.  For the given structure, the 

quantities of interest are defined symbolically.  In addition, only the dimensions associated 
with each variable are established, e.g., stress is force per area (F/L2). 

 
• Define Known and Unknown Variables.  For the predefined structure the student is required 

to determine what is given (known) and what must be determined (unknown).  Once the 
unknown variables are established then the number of independent equations to solve the 
problem can be established. 

 
• Free-Body Diagrams (FBD).  A complete and accurate FBD of the structure and each 

component is required. 
 
• Sign Convention.  A consistent sign convention is used throughout the entire analysis of the 

structure.  Students do not realize the importance of sign control. 
 
• Symbolic Derivation of Equations.  Emphasis is placed on deriving all equations 

symbolically based on fundamental principles without regard to isolating the unknown 
variable on the left-hand side of the equation and the known variables on the right-hand side. 

 
• Independent Equations.  Especially when summing moments, the students need to be 

reminded of the requirement for generating independent equations. A common error occurs 
with two force summations and multiple moment summations on one FBD. 

 
• Dimensional Verification of Equations and Unit Conversion.  Due to the symbolic nature of 

the equations, the dimensions of a variable are checked to make sure that the variable 
describes quantitatively the physical properties. 

 
Progression of Symbolic Approach in a Mechanics of Materials Course 
 

To encourage the development of good habits throughout the course, a variety of 
exercises are posed in-class and additional reading and problems are assigned for homework.  
Each problem includes a list of simple, known results and limiting case scenarios for solution 
verification.  Early in the course, these test scenarios for the homework and project assignments 
are provided, and the students compare the computer solution for the anticipated results.  Later in 
the course the students design the test cases for homework and project assignments and comment 
on the results.  Solution verification scenarios become a component of the quizzes and tests 
throughout the course.
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Example 1: Statically Indeterminate Beam on Elastic Supports 

 Consider the statically indeterminate elastic beam loaded by its own weight and 
supported by three elastic posts as shown in Figure 1.  The symbolic formulation of this problem 
is discussed in the Appendix.  The problem formulation is divided into the following six steps: 
 
1. Model 
2. Free Body Diagrams 
3. Equilibrium Equations 
4. Compatibility 
5. Material Law 
6. Deflection Analysis of Elastic Beam 
 
The first five steps focus on formulating the problem for a rigid beam and the sixth step 
introduces the elasticity of the beam.  The Appendix shows that 20 independent equations are 
required to solve this problem. The equations are input into an engineering equation solver 
program, of the student’s choice, in the form and order of their derivation from basic principles.  
No attempt is made to isolate a variable on the left-hand side, and there is no algebraic 
combining of the equations.  This type of complex problem is rather difficult to solve by hand!  
There are 20 coupled equations since the problem is statically indeterminate.   

(1)L  
L  

L  1
3 (3)

2

(2)

L
S

Elastic Uniform Beam of Weight W 

 
Figure 1. Statically indeterminate elastic beam supported by elastic posts. 

 
The problem in Figure 1 is solved through in-class and out-of-class exercises.  First, a simple 

problem is considered, and then more complexity is added as new concepts are introduced in the 
course.  This problem complexity progression is shown in Figure 2.  The following four 
progressive cases in Figure 2 include: 
 
• Case 1: Statically determinate rigid beam with elastic supports, Figure 2a.  This problem is 

discussed when statically determinate axial problems are introduced in the course.  This 
statically determinate problem is easy to solve by hand since the equations are uncoupled. 
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• Case 2: Statically indeterminate rigid beam with elastic supports, Figure 2b.  This problem 
is discussed when statically indeterminate axial problems are introduced in the course.  This 
problem can be solved by hand.  However, since the equations are now coupled the solution 
is much easier to solve using a computer. 

 
• Case 3: Statically determinate elastic beam with elastic supports, Figure 2c.  This problem is 

discussed when statically determinate beam problems are introduced in the course.  The 
addition of the elastic beam makes a computer solution an easy choice. 

 
• Case 4: Statically indeterminate elastic beam with elastic supports, Figure 2d.  This problem 

is discussed when statically indeterminate beam problems are introduced in the course.  This 
problem can only be solved using a computer since there are 20 coupled equations (see 
Appendix). 

 
To limit the discussion, we will focus on Case 4 in Figure 2d and describe how Cases 1 through 
3 in Figure 2a through 2c, respectively, can be obtained.  In-class examples and out-of-class 
homework exercises are employed throughout the course so students gain a better understanding 
of verification of  the “answer” and the physics of the problem.   

(1)L  L  1 2

L

Rigid Uniform Beam of Weight W 

(2)
(1)L  

L  
L  1

3 (3)

2

(2)

L
S

Rigid Uniform Beam of Weight W 

a. Case 1: Determinate rigid beam. b. Case 2: Indeterminate rigid beam. 

(1)L  L  1 2

(2)

L

Elastic Uniform Beam of Weight W 

(1)L  
L  

L  1
3 (3)

2

(2)

L
S

Elastic Uniform Beam of Weight W 

c. Case 3: Determinate elastic beam. d. Case 4: Indeterminate elastic beam. 
Figure 2. Four cases of a beam supported by elastic posts. 

 
The students gain a better understanding of verification of  the “answer” from Case 4 

through the following exercises: 
 
• Case 3 as a Limit of Case 4.  Remove the inner post (insert low E and/or A for inner post 

relative to the outer posts), and let the outer posts have equal stiffness.  This problem can be 
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easily checked by hand since it is statically determinate.  Each outer post force should 
approach half the beam weight.  The change in lengths of the outer posts can be calculated, 
(∆L = FL/AE), and the deflection of the beam mid-span relative to the ends can be calculated 
from the displacement formula for a uniformly loaded simply supported beam, (v = 
5wL4/384EI).  By also making the outer posts rigid (insert a large E and/or A for posts 
relative to the beam) yields the displacement solution for a uniformly loaded simply 
supported beam. 

 
• Case 2 as a Limit of Case 4.  Make the posts equally spaced and of identical materials, areas, 

and lengths (thus same stiffness), and make the beam very stiff (very large E and/or I).  The 
calculated results should yield equal post loads and length changes. 

 
• Case 1 as a Limit of Case 4.  Case 1 is the same as Case 3 except that the beam is rigid 

(insert a large E and/or I for the beam relative to the posts). 
 

The authors use qualitative and quantitative exercises in-class and out-of-class so that the 
students gain a better understanding of the physics of the problem.  The physics of the problem is 
introduced in Cases 1 through 4 (Figure 2) through the following exercises: 

 
• Load Direction.  Change the direction of the distributed load to ensure that the internal 

forces, stresses and displacements change in direction and not magnitude. 
 
• Load Magnitude.  Double the distributed load to check for doubling of the support forces and 

the vertical displacement in the beam and supports. 
 
• Elastic Support Cross-sectional Area.  Doubling the cross-sectional area of the support will 

yield half the stress, the same force and half the vertical displacement at each support. 
 
There are many more exercises that could be considered.  One should note that the students also 
obtain a better understanding of the physics of the problem through the verification of  the 
“answer” exercises. 
 
Example 2: Cantilever Circular Shaft with an Attached Lever 

Consider the circular elastic shaft with an attached elastic lever subjected to a 
concentrated end force as shown in Figure 3.  This in-class exercise is presented towards the end 
of the course when the combined loading topic is covered.  In this course, complex deflection 
analysis is included in addition to the traditional combined stress analysis covered in all 
textbooks.  This problem requires calculating the stiffness of the structure measured at the free 
end of the lever and determination of the magnitude and location of the maximum von Mises 
stress in the structure. All equations are written symbolically and then entered by the student into 
an engineering equation solver tool of their choice.  

 
So that the students gain a better understanding of the physics of the problem and verification 

of the “answer”, some of the following exercises are considered: 
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• Rigid Shaft and Elastic Lever.  For very large shaft E and G, the solution corresponds to a 
cantilever beam (lever) of length D and fixed at point B. 

 
• Elastic Shaft and Rigid Lever.  The solution is the superposition of the shaft in torsion and 

the cantilever shaft in bending.  For this case, the torsion and bending of the shaft are 
artificially uncoupled by the independent selection of magnitudes for E and G.    The solution 
is based on the following two simpler cases: 

 
o Shaft in Torsion.  Assuming a large value for the shaft E and/or I, the solution 

corresponds to a circular shaft subjected to a concentrated end torque. 
 
o Cantilever Beam (Shaft).  When the shaft shear modulus G is assumed very large relative 

to E, the solution is a cantilever beam with a concentrated force P at the free end of the 
shaft. 

 
• Elastic Shaft and Elastic Lever.  This case corresponds to the superposition of the two cases 

above. 
 
This problem can be increased in complexity by adding to the end of the lever a concentrated 
force parallel to the longitudinal axis of the shaft.  Similar scenarios can then be considered as 
discussed above. 
 

L

R

D

b

h

P

A

B

Shaft Lever

 
Figure 3. Cantilever circular elastic shaft with an attached elastic lever. 

 
Conclusion 

Formulating a mechanics of materials problem in symbolic form and then solving the 
equations with an engineering equation solver tool has been proposed.  This approach allows the 
students to gain a better understanding of the physics of the problem and the verification of the 
“answer.”  This approach is implemented through in-class examples and out-of-class reading 
assignments.  The students also use this approach in homework, projects, quizzes and tests 
throughout the course.  In the early part of the course the students are given the scenarios for 
understanding the physics of the problem and verification of the “answer.”  Later in the course 
they must define their own scenarios. 
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There are many advantages in using the proposed approach in a sophomore level 

mechanics of materials course.  One advantage is that solving the symbolic equations with an 
engineering tool reduces to a minimum the required algebraic manipulation of equations because 
there is no need to isolate the dependent variable on the left-hand side of the equation.  Thus, the 
student can very easily explore any desired combination of known and unknowns without 
rewriting the equations.  Using this approach students are, for the first time, able to understand 
what engineering is about since they are allowed to do more than just solve ‘one answer’ type 
textbook problem.  Another particular advantage is that simple design problems can be easily 
integrated into the course.  The proposed approach can also be used in follow up design and 
nondesign courses that includes advanced mechanics of materials, machine design, structural 
analysis, structural design, etc.   
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Appendix

Ex a m p l e 1: Th e un if orm ela s ti c bea m o f, t ot al we igh t W, ( di stri bu ted l oad,
w = W

L ), i s now sup port ed on t hree elast ic po sts a s sh own i n Fig . A.1 . The post
spacing, the post cross sectional areas, the lengths and the material properties of
beam and posts are all arbitrary. Derive the fundamental equations from which
you can obtain the post and beam displacements and the contact forces between
the beam and posts.

(1)L
L

L1
3 (3)

2

(2)

L
S

Elastic Uniform Beam of Weight W

Figure A.1. St atically indeterm inat e e last ic b e am supp ort e d by e lastic p o sts.

SOLUTION:

1. Model. Isolate the posts (bars) and beam elements of the structure as
shown in Fig.  A.2.

FBD I

Rigid Weightless Beam

FF1 F
3 2

+

w

(1)

FBD II

F

R

1

1

F

R

2

(2)

2

FBD III

F

R

3

(3)

3

FBD IV

G

Fi gure A.2.  Beam and p osts free b o dy diagrams.
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2. Free Body Diagrams. The free body diagrams of the posts and the beam
a re s ho wn i n Fig. A.2 Al t ho ugh i t m ay be co un t e r to yo ur i nt ui ti on , t he
post unknown forces are assumed in the positive (tensile) direction. The
only reason for doing this is to avoid using negative forces in the Hooke’s
Law equations. The solution will yield a negative if the forces are really
compressive.

3. Equilibrium Equations. Applying equilibrium equations to the beam in
Fig. 2 will relate the forces exerted by the posts to the applied load which,
in this case, is the beam’s weight.

Summing forces on FBD I:

FBD I,
X

Fvertical, F1 + F2 + F3 +W = 0 (1)

Summing moments about the left end:

FBD I,
X

Mleft end, W (
L

2
) + F2(L) + F3(S) = 0 (2)

We can write only two independent equilibrium equations for the three un-
known post forces, F1, F2 and F3. The problem is statically indeterminate

4. Compatibility. Compatibility will relate the displacements of the three
posts to the displacement of the beam at the respective points of contact.
Figure A.3 has been drawn to indicate the deformation of the posts and beam.
An XY coordinate system has been arbitrarily placed at the tops of the
undeformed posts with the origin at the top of the post (1) ; the dis-
placements vA, vC and vE of the post tops will be referenced to the Y axis
and will be positive in the upward +Y direction.

(1)

(2)
(3)

A

B

E

H

C

D

Y

A E C
X

v v v

Rigid Weightless Beam X
K M N

K
v M

v

N
v

Y

F igure A.3. Compat ibility di agrams.

If we make the (reasonable) assumption that the deformation of the beam
between the points of contact with the posts and the neutral surface is
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negligible, we may write the following compatibility conditions:

vA = vK (3)

vC = vN (4)

vE = vM (5)

5. Material Law. The Material Law for the end loaded bar will be applied to
each of the posts (bars). The forces on each post have been assumed in the
positive (tensile) sense, and we write the equations with the assumption of
a positive change of length; if the bars actually compress, the ∆L answer
will be negative. Recalling once again the Hooke’s Law relationships for
the change of length of a bar (post):

Post (1): ∆L1 =
F1L1
A1E1

(6)

Post (1): ∆L2 =
F2L2
A2E2

(7)

Post (1): ∆L3 =
F3L3
A3E3

(8)

where the change of length of each post is defined in terms of the displace-
ments of the end points. Recall the following conventions:

• Displacements are positive in the positive coordinate direction, +v in
+Y direction.

• The positive change in length of the bars is defined by

∆L1 = vA (9)

∆L2 = vC (10)

∆L3 = vE (11)

At this point, we have 11 independent equations for 12 unknowns.

F1, F2, F3, vA, vC , vE, vK , vM , vN ,∆L1,∆L2,∆L3,

Since there are more unknowns than equations, we must now obtain
the additional equation(s) by considering the deformation of the beam.

6. Deflection Analysis of the Elastic Beam. We will elect to use
the double integration method to solve for the beam deflection. We will
construct free body diagrams of different lengths of the beam and write
piecewise continuous internal moment equations valid within spatial con-
straints. Where the beam length passes though the discontinuity, boundary
conditions will be enforced.
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(a) Free Body Diagrams. Because of the force applied by the inner
post, the internal couple bending moment function is not continuous;
it is piecewise continuous over the regions on each side of the inner
po s t . T h u s , w e co n s t r u c t t w o f r ee bod y d i a g ra m s , i n F i g . A.4 , t o o b t a i n
the bending moment in each region.

F1

F1

x

x

x

M

M

Fs

Fs

w

w

F3

Y

0 < x < S_ _

FBD V

S < x < L__

FBD VI
x

Figure A.4. Beam free b o dy diagrams.

(b) Equilibrium Equations. Referring to FBD V and FBD VI in Fig.
A.4, we writ e the moment equations f or each sect ion:

M = −F1x− wx
2

2
0 ≤ x ≤ S :

M = F1x+ F3 (x− S) + wx
2

2
S ≤ x ≤ L :

(c) Differential Equation. For each region of x where the internal
moment is a continuous function, we substitute the internal moment
expression and integrate twice:
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For 0 ≤ x ≤ S :

EI
d2v

dx2
= M

EI
d2v

dx2
= −F1x− wx

2

2

EIθ = EI
dv

dx
= −F1x

2

2
− wx

3

6
+C1 (12)

EIv = −F1x
3

6
− wx

4

24
+C1x+C2 (13)

For S ≤ x ≤ L :

EI
d2v

dx2
= −F1x− F3 (x− S)− wx

2

2

EI
dv

dx
= −F1x

2

2
− F3

µ
x2

2
− Sx

¶
− wx

3

6
+C3 (14)

EIv = −F1x
3

6
− F3

µ
x3

6
− Sx

2

2

¶
− wx

4

24
+C3x+C4 (15)

(d) Boundary and Continuity Conditions. Substitute the following
boundary and continuity conditions:

i. For x = 0 in Eq. 13, v(0) = vK (boundary condition at the left
end)

EIvK = C2 (16)

ii. For x = S in Eq. 13, v(S) = vM (boundary condition at inner
support)

EIvM = −F1S
3

6
− wS

4

24
+C1S +C2 (17)

iii. For x = S, Eq. 13 =Eq. 15 (continuity of displacements at the
inner support post)

−F1S
3

6
− wS

4

24
+C1S +C2 = −F1S

3

6
− F3

µ
S3

6
− SS

2

2

¶
− wS

4

24
+C3S +C4

C1S +C2 = F3
S3

3
+C3S +C4 (18)

iv. For x = S, Eq. 12 = Eq. 14 (continuity of the slopes at the
inner support post)

−F1S
2

2
− wS

3

6
+C1 = −F1S

2

2
− F3

µ
S2

2
− S2

¶
− wS

3

6
+C3

C1 = F3
S2

2
+C3 (19)
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v. Fo r x = L in E q . 15 , v (L) =  vN (boundary condition at the right
end)

EIvN = −F1L
3

6
− F3

µ
L3

6
− SL

2

2

¶
− wL

4

24
+C3L+C4 (20)

7. Solve. There are 16 unknown variables in the equations as they have been
written:

F1, F2, F3, vA, vC, vE, vK , vM , vN ,∆L1,∆L2,∆L3, C1, C2, C3, C4

and these will be determined from the simultaneous solution of the eleven
independent equations (1) through (11) plus the five equations (16) through
(20). These equations have been inserted into an equation solver. Use the
equation solver of your choice and compare the answers.

8. Verify. Once again, we stress the importance of testing your solution.
For example, you should try the following:

• Make the posts equally spaced and of identical materials, areas, and
lengths (thus same stiffness), and make the beam very stiff (very high
E and/or I). The calculated result should yield equal post loads and
length change.

• Remove the inner post (insert low E and/or A relative to the outer two
posts), and let outer posts have equal stiffness. This problem can be
checked by hand since it is statically determinate. Each outer post force
should approach half the beam weight. The change in lengths of the outer
posts can be calculated, (∆L = FL

AE ), and the deflection of the beam mid-
span relative to the ends can be calculated from the displacement formula

for a uniformly loaded beam, (ν = 5wL4

384EI ).

• Make the end posts of very low stiffness relative to the inner post. The
inner post force should approach the weight of the beam.
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