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Abstract—AI-based biomedical engineering tools are 
increasingly being used to address critical challenges in various 
aspects of healthcare, from diagnostics to therapeutics. While AI 
offers immense potential to improve clinical decision making, the 
trust of intended users (e.g., nurses and physicians) in 
these systems remains largely unexplored. This study 
addresses the gap in medical education by investigating how 
nursing students interact with and trust AI 
recommendations in realistic healthcare scenarios. In a 
multidisciplinary collaboration of experts in biomedical 
engineering, nursing, psychology, and simulation, we 
present a novel virtual platform for simulating healthcare 
tools to assess students' trust in AI recommendations using 
custom-designed scenarios illustrated with video vignettes. Using 
different AI systems with varying levels of performance and 
combinations of correct and incorrect suggestions, the 
platform is designed to provide an in-depth exploration of 
these trust dynamics in realistic healthcare settings. The 
platform allows the collection of participants’ trust levels, 
cognitive loads, reaction times, and physiological reactions 
throughout the experiment using validated tools. 
Physiological measures, particularly electrodermal activity, 
aim to capture the effect of trust in the emotions of the 
participants during the study. The platform enables 
researchers to study how different AI performance and 
scenario complexity affect trust, decision making, and 
cognitive load for users, and can help inform the 
development of future targeted educational interventions aimed 
at optimizing the integration of AI into healthcare education 
and practice. 
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I. INTRODUCTION 

AI is revolutionizing healthcare and medical education 
by enabling automated assessments, personalized learning, 
real-time content updates, clinical simulations, and 
adaptation of educational materials to reflect current 
research and practice [1]. This technological shift comes 
at a time when the traditional method of medical 
education faces significant challenges, such as limited 
hands-on experience, inconsistent mentoring, and the 
burden on students to memorize and replicate complex 
real-world scenarios taught in resource-constrained 
settings [2]. Trust in AI has been identified as 

essential to the successful adoption of AI in health 
professional education [3]. Trust in technology has been 
investigated from a psycho-physiological perspective across 
diverse domains from driving simulation to virtual reality and 
collaborative robotics [4], [5], [6].  Yet, a significant gap 
exists in the nursing field, as no study has addressed nurses' 
trust in biomedical AI tools. We present a platform for 
measuring and monitoring trainee nurses' trust in AI 
healthcare technology systems (AIHTs). 

Existing approach in assessing trust in AI tools for 
learning and guiding trainees in patient outcomes has been 
largely dependent on expert supervisors, educators, or 
clinicians, who can swiftly determine the relevance and 
applicability of AI-generated outputs—an ability that novice 
learners may lack [1]. Regardless of expert validation, it has 
been declared that trainees may either underuse AI tools due 
to distrust or become overly reliant on them, potentially 
leading to professional deskilling [7]. Therefore, to effectively 
integrate AI into medical training, there's a critical need for 
AIHTs that can measure and monitor trainee trust in AI tools 
within healthcare education. This is essential because 
understanding trainee trust levels will allow educators to 
design tailored learning pathways, identify strengths, and 
weaknesses in knowledge and reinforce critical concepts 
before trainees interact with real patients [8].  

Defining trust is complex due to variations in 
interpretation across different fields [9]. Nonetheless, in this 
study, trust is defined as the willingness of a party to be 
vulnerable to the actions of another party based on the 
expectation that the other will perform a particular action 
important to the trustor, irrespective of the ability to monitor 
or control that other party [10]. The complexity of human-AI 
interaction necessitates examining trust across three 
dimensions: dispositional, situational, and learned trust [5].   
Dispositional trust is a stable tendency to trust AI, shaped by 
personality traits and past experiences. Situational trust, by 
contrast, is dynamic and context-dependent, influenced by 
system complexity, task difficulty, and perceived risk. 



Learned trust develops through direct interactions with AI, 
updating over time based on experience. In healthcare, which 
is the focus of this study, trust measurement primarily relies 
on situational trust, as users assess AI based on real-time 
performance and perceived reliability. Nevertheless, across all 
types of trust, cognition plays a crucial role in shaping trust 
through beliefs, prior experiences, and continuous 
reassessment based on new information [11], [12], [13]. 
 

Several attempts have been made in literature to assess 
trust from a pyscho-physiological perspective since it carries a 
cognitive component [4]. Trusts manifestation in the human 
body is the result of a complex series of physiological events. 
One related connection can be seen by changes in a person’s 
skin conductance because of changes in stress level associated 
with trust. Skin conductance changes captured by 
electrodermal activity (EDA) are not under conscious control 
but rather is altered by the sympathetic innervations of sweat 
glands, which cause increase on sweating production. It is of 
importance to mention that EDA is also called galvanic skin 
response. Continuous monitoring of EDA has been widely 
explored in many settings including monitoring pain, stress, 
fatigue, and trust [14], [15], [16]. Several recent studies have 
investigated the link between trust and EDA, showing that 
lower trust correlates with higher EDA. An early study 
showed that the EDA of users of a text chat environment was 
strongly affected by trust and cognitive load [17]. Recent 
studies have further validated the suitability of EDA to assess 
trust [18], [19], [20], [21].   
 

Various approaches to measuring trust in AI and 
automated systems have been explored in the literature. While 
our study focuses on nurses interacting with AI healthcare 
tools, these methods build upon prior research in related 
domains. Trust in automative sensors was evaluated using 
EEG and EDA during simulated driving tasks [5]. Similarly, 
EDA and EEG were combined to assess trust and cognitive 
load in virtual reality environments, demonstrating the 
versatility of these physiological measures across different 
interaction modalities [4]. In the domain of robotics, EDA was 
specifically investigated as a primary physiological marker for 
indicating trust in human-robot collaboration [6]. Most 
relevant to our healthcare focus, the impact of enhanced 
factual explanations on trust in AI systems was examined by 
measuring both blood volume pressure and EDA [22]. Our 
AIHT platform extends these methodologies into the critical 
healthcare education context, where accurate trust calibration 
has direct implications for patient care, while preserving the 
proven effectiveness of EDA as a trust indicator across 
various human-AI interaction scenarios. 
 

This paper aims to design a platform that addresses the 
identified gap in medical education by measuring and 
monitoring trainee nurses' trust in AIHT, by integrating a set 
of simulated scenarios and simultaneous collection of EDA 
signals. The AIHT platform aims to assess the relationship 
between trust and nurse-AIHT performance, reducing reliance 

on expert judgment alone for evaluating trust in AIHT 
technologies. Its potential benefit lies in fostering appropriate 
trust among trainees, enabling them to make critical decisions 
effectively in fast-paced real-life scenarios.  The platform and 
preliminary validation of the platform are presented in the 
following section. 
 

II. MATERIALS AND METHODS 
In synthesis, The AIHT platform is an interactive system 

designed to assess nurses' decision-making and trust in AI-
assisted healthcare scenarios. Participants watch realistic, 
custom-designed video scenarios where they must decide on a 
course of action—using an AED, administering NARCAN, or 
doing nothing—based on an AI system’s recommendation. 
The platform measure’s reaction time provides immediate 
feedback on decision accuracy and evaluates trust using the 
Human-Computer Trust Scale (HCTS) and workload demands 
via the NASA-TLX questionnaire. To examine the impact of 
AI performance on trust, the platform allows the participants 
to interact with both high-performance (HPAI) and low-
performance (LPAI) AI systems across 40 scenarios, with 
randomized exposure order. The AIHT platform is illustrated 
in Fig. 1. A more detailed description of the AIHT platform is 
provided below. 
 

AIHT Platform Design: The platform presents the 
participant a series of realistic scenarios illustrated with 
videos. The videos depict a realistic scenario illustrated with 
vignettes in which a nurse ultimately had to make a critical 
decision with the assistance of an AI system. A pool of 50 
scenarios were designed. For this implementation, the 
participant has three options: automated external defibrillator 
(AED), administer NARCAN, or do nothing.  These videos 
were custom-designed by members of the research team from 
the UConn School of Nursing to mimic nursing-related events 
that commonly incorporated AI technology. For example, in a 
given scenario a patient has a deteriorating condition and it’s 
important to decide if cardiopulmonary resuscitation is 
needed. Given the specifics of the situation, the AI system 
recommends using the AED. Then, the participant must 
choose to follow the AIHT suggestion or choose another 
option. The participant receives a response notifying them of 
the “correctness” of their answer (the patient survived or not).  
 

The AIHT platform also assesses human-computer trust 
using the HCTS [23], which measures perceptions of 
benevolence, competence, and perceived risk in human-
technology interactions. Additionally, the AIHT platform 
includes the NASA-TLX questionnaire after each testing 
group to evaluate workload demands while performing the 
task [24]. Given that trust is affected by AI performance, we 
designed high-performance AI (HPAI) systems and low-
performance AI (LPAI) systems. Each participant interacted 
with an HPAI and an LPAI system for 20 scenarios each. 
Participants will be randomly assigned to interact first with 
either the HPAI or LPAI systems. There will be a break 



between the interaction with the first AI system and the 
second AI system. As each scenario lasts approximately 38 
seconds, the total procedure takes about 60 minutes, 
accounting for training and downtime between scenarios.  

 

A. AIHT Platform Implementation 
The AIHT platform design follows a simplistic two-layer 

web architecture topology [25]. The web architecture topology 
combines three components of application, presentation, 
processing, and database in two modalities on a machine with 
specifications Intel(R) Core (TM) Ultra, 32 Gb RAM, 3.8 
GHz processor speed, Windows 11 operating system, Apache 
2.4.54 server and Oracle Database 18c Express Edition 
Production. Bootstrap 5 framework containing user interface 
(UI) components such as HTML, CSS, JavaScript, AJAX and 
PHP were used to render and control logic of the experiments 
presented to the participants and investigators. Below is the 
pseudocode for the AIHT platform. 

 
START Experiment 
SET numberOfExperiments = 40 
SET count = 0 
WHILE count < numberOfExperiments DO 
    Play vignettes 
    AIHT offers recommendations 
    Participant decides and gets a response 
    IF count is in [5, 10, 15, 20, 25, 30, 35, 40] 
    THEN 
         IF count == 20 THEN 
             Participant fills NAS-TLX 
             Participant fills HCTS 
             Participant takes a break 
         ELSE IF count == 40 THEN   
             Participant fills NAS-TLX 
             Participant fills HCTS 
             Start new experiment 
         ELSE   
             Participant fills NAS-TLX 
             Participant fills HCTS 
         ENDIF 
   ENDIF 
     INCREMENT count 

 ENDWHILE 
 

B. Physiological Recording 
 The Empatica Embrace Plus watch is used for acquisition 
of EDA. It has a range of 0.01 – 100 microsiemens, resolution 
of 1 digit - 900 pico Siemens and at a sampling frequency of 4 
Hz.  

C. AIHT Platform Validation 
In our ongoing study, we aim to recruit nursing students, at 

sophomore, or junior level. Individuals who use stimulants 
such as caffeine will be excluded.  For preliminary validation 
of this platform, we are presenting the data of one participant 
to show the efficacy of the AIHT platform. Upon arrival at the 
lab, the participants were informed about the study's purpose 
and given consent forms. After providing consent, they 
registered on the AIHT platform. This study was conducted 
under an approved IRB protocol (B2024-0023) at the 
University of Connecticut.  

III. RESULTS 

A. Signal Processing 
 This study analyzes data comprised of acquired EDA 
signals, trust-influenced reaction times, and cognitive 
performance of trainee nurses during experiments Fig. 2.  Raw 
EDA signals were processed using a 5-second window median 
filter for smoothing, followed by a low pass FIR filter of 1 Hz 
to remove high-frequency components. The cleaned signal was 
then decomposed into tonic (slowly varying) and phasic 
(rapidly changing) components using the cvxEDA technique 
[26]. The EDA response from a participant during interaction 
with a HPAI is shown on Fig. 3. The HPAI has 95% of 
accuracy in their recommendations. During this phase, an 
average of 34 EDA peaks were observed, and the participant 
exhibited a 90% of accuracy in their responses. The average 
reaction time was 4.75 seconds. This suggests that the AIHT 
system’s high accuracy fostered trust, leading to strong 
performance (Fig. 3a).  

After a five-minute rest period, the participants interacted 
with a LPAI with an accuracy of 60% in their 
recommendations. This phase resulted in a 30% increase in  
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Fig.  1. Experience sequence for cognitive performance and trust assessment on the AIHT Platform. 

 
 

 
 



 

EDA peaks compared to the trust-building phase, potentially 
indicating increased cognitive effort due to the AIHT’s reduced 
reliability. Simultaneously, performance accuracy of the 
participant dropped by 50%, suggesting that diminished AI 
accuracy weakened trainee nurses’ trust, negatively affecting 
their performance (Fig. 3b).  

IV. DISCUSSION AND CONCLUSION 
This preliminary study introduced a novel platform for 

assessing trainee nurses' trust in AI healthcare technology 
systems. While our findings are based on limited initial data, 
they suggest that the integration of physiological signals such 
as EDA with behavioral measures may offer valuable insights 
into trust dynamics in healthcare AI interactions. The observed 
differences in EDA response patterns, reaction times, and 
accuracy between interactions with high-performance and low-
performance AI systems align with current understanding of 
trust formation [11], [12], [13]. These preliminary observations 
align with previous studies exploring physiological markers of 
trust and warrant further investigation with a larger sample to 
establish their reliability and generalizability [18], [19], [20], 
[21]. 

Our work has several limitations that should be 
acknowledged. Most significantly, the current validation is 
based on data from a single participant, which serves as proof 

of concept rather than definitive evidence. The planned 
expansion to 40 participants will provide a more robust 
evaluation of the platform's efficacy. Additionally, the artificial 
laboratory setting may not fully capture the complexity of real-
world clinical decision-making environments that trainee 
nurses will encounter [1], [7]. Despite these limitations, this 
study represents an important step toward developing objective 
measures of trust in healthcare AI. The AIHT platform's 
integration of realistic video scenarios with physiological 
monitoring offers a promising approach for future research and 
potential applications in nursing education [8]. As AI systems 
become increasingly prevalent in healthcare settings, 
understanding the factors that influence appropriate trust 
calibration will be essential for effective human-AI 
collaboration [3]. 

Future work will focus on validating the platform with a 
larger sample and exploring personalized difficulty 
adjustments to optimize learning outcomes. We also aim to 
investigate how different AI explanation styles might influence 
trust formation and decision quality in healthcare contexts, 
building on existing frameworks for AI integration in health 
professions education [1], [3].  
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Fig.  1. Experimental view of the AIHT platform during experiments (a) Instance of a scenario illustrated with vignettes b) Trainee Nurse using the 
AIHT platform. 
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