
Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Session 1394

A Pedagogy to Support Modern Concepts in Distributed Systems
Courses

Bina Ramamurthy, Eric Crahen
Computer Science and Engineering Department

University at Buffalo
Buffalo, NY 14260-2000

bina@cse.buffalo.edu, crahen@cse.buffalo.edu
716-645-3180 (108)

P
age 8.94.1

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Abstract

Recently, there have been many advances in technology and infrastructure to meet the
changing needs of the application domains. These changes have resulted in the
development and adoption of a rich set of novel concepts in distributed systems. For
example, lookup, discovery, custom event and event handling, runtime reflection, callback
and service leasing are just a few of these new ideas. Traditional approaches to teaching
Distributed Systems courses do not cover these newer concepts for reasons ranging from
lack of support from the existing framework to the fear sacrificing coverage of some
fundamental concepts. Moreover, many of the textbooks used do not cover these
concepts. In this paper, we present a pedagogy that seamlessly integrates the modern
concepts to the existing conventional methods for teaching distributed systems. We
propose a set of laboratory experiments that will not only illustrate how to integrate the
newer concepts into existing framework but will also provide the students with hands-on
experience in the application of these concepts. The design and description of three
laboratory projects that cover newer topics in Distributed Systems, namely, (i) location-
independence, (ii) active discovery and (iii) interoperability and persistence are shown.
These projects will serve as models for development of similar projects illustrating other
concepts of interest. A major contribution of this paper will be the pedagogy that will
build bridges between the rapidly advancing modern technologies and the traditionally
rigid curricula.

1. Introduction
A distributed system is a collection of autonomous computers linked by a network and
supported by software that enables the collection to operate as an integrated facility [14].
A course in distributed systems covers the design principles, the architecture, the
components, services, and the issues in concurrency, transactions and security, client-
server models, and integration models and other related material. This course is typically
offered as an upper division (senior level) undergraduate course at some schools (See

P
age 8.94.2

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

Table 1) and also as an entry-level graduate course. The two of the textbooks commonly
used for the course are the one by Steen et al [12] and the other one by Colouris et al [2].
With the advent of the Internet and the information technology revolution it brought
about, distributed systems have evolved from a simple file server or data server into a
multi-tier system integrating applications, data and resources. The size, complexity and the
scale of the computations and data grew exponentially. To handle the complexity and
scale, newer distributed architectural models such as Common Object Request Broker
Architecture (CORBA) [7], Remote Method Invocation (RMI) [4], Microsoft’s .NET [5]
and Java 2 Enterprise Edition (J2EE) [3] have been introduced. Associated with these
architectures are a set of protocols, procedures and algorithms to support the features of
the new architectures. The technology wave created by these and the demands of the
current application domains have greatly increased the importance of proactively preparing
our students for this technological workplace. One of the ways of preparing them is to
introduce these modern concepts into appropriate courses in their curriculum. We feel that
the distributed systems course is the most appropriate of them all to introduce such
concepts. The challenge then is to introduce newer concepts without cannibalizing the
existing core curriculum of the course. Traditional textbooks do not provide a solution. It
is understandable that the authors of textbooks find it difficult to keep up with the pace of
introduction of these newer concepts and technologies. We describe in this paper a
pedagogy that utilizes the laboratory component of a distributed systems course to teach
the modern concepts. This solution for teaching modern concepts has a broader impact
than on a distributed systems course. It can be used for other courses with laboratory
component and also for adapting and testing the viability of other concepts in the future.

We studied the current status of distributed systems courses offered at selected schools
and the details we discovered are explained in the Section 2. The laboratory-based
pedagogy is explained in Section 3. This section gives the templates for the laboratory
projects including the source code and structure, and methods for adapting the pedagogy.
Finally we summarize our experience with the distributed system course in our curriculum.
2. Current Status

Many universities do have a distributed systems course even though the coverage varies
widely from a theoretical course at Yale University to a hands-on practical course at John
Hopkins University. In the Table 1 we have put together a random list of schools that have
a well-established programs in the distributed systems area. This allows us to study the
trend and the variety of distributed systems curriculums. We have provided links to most
of the programs for the readers to examine these courses for themselves. Most of the
schools use a textbook. Others have a recommended reading list. Both these approaches
do use laboratory-based projects in the courses. The pedagogy we propose is applicable to
both the approaches.

P
age 8.94.3

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

School Name Course Number and link Text
Stanford University CS 244 Distributed Systems

www.stanford.edu/class/cs244b/#Materials
[10]

U. of Illinois, Urbana-
Champaign

CSE 328 Distributed Systems:
 www-courses.cs.uiuc.edu/~cs328

[11]

Brown University CS176 Intro. to Distributed Computing:
 www.cs.brown.edu/courses/cs176

[15]

Yale University CS 425 Theory of Distributed Systems:
zoo.cs.yale.edu/classes/cs425

[15]

Rice University COMP 520 Distributed Systems:
not accessible

[12]

Georgia Tech. CS7210 Distributed Computing:
www.cc.gatech.edu/classes/AY2003/cs7210_fall

[9]

U. of North Carolina, Chapel HillCOMP243 Distributed Systems:
www.cs.unc.edu/~kimk/comp243

[6, 13]

John Hopkins University CSE337/437 Distributed Systems:
 www.cnds.jhu.edu/courses/cs437/ref.html

[1]

U. of Texas at San Antonio CS 5523 Operating Systems:
vip.cs.utsa.edu/classes/cs5523s2001

[2]

Table 1: Sample Distributed Systems Courses

3. The Laboratory-based Pedagogy

The stepwise description of the proposed pedagogy, a case study involving a senior level
distributed systems course with short descriptions of the projects, the project templates
and some suggestions for adapting the pedagogy are given in this section.

3.1 Proposed Pedagogy

During the planning stages of the course decide on the one or more major concepts 1.
or ideas that you desire to introduce. For example, application level
interoperability between J2EE platform [3] and .NET platform [5].
Establish the context and importance of each of the concepts for the course goals 2.
and make sure they warrant a laboratory project. In our course the concepts or
ideas are solutions to many unsolved issues or problems with existing processes
and systems. For example, transforming a simple naming service into a location-
independent naming service.
Design the project description for the laboratory that explains the problem. The 3.
details such as the goals, requirements, protocols, procedures, documentation,
example programs, expected output, outcome assessment methods and due date
are provided. This is a critical step where students are encouraged to apply their
knowledge, originality and creativity to create various alternate solutions.
Typical projects in the distributed systems area deal with elaborate environment 4.
and file structures. Provide a skeleton structure for the directory of files and
environment. Explain the usage with an example. See the illustration in Section 3.2

P
age 8.94.4

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

for more details of this step.
Explain any special tools such a make utility or build tools that may facilitate the 5.
development process.
Incorporate the project experiences into the lecture material and the assessment for 6.
the course.

3.1 Case Study: Senior Level Distributed Systems Course

The proposed pedagogy was used in a senior level distributed systems course (CSE486) in
the Computer Science and Engineering department at State University of New York at
Buffalo (UB). Before introduction of the new pedagogy the projects used were on topics
such as concurrency using multithreading, simple distributed file system, and simple use of
CORBA objects. The problem with this approach is that there is no room for scientific
inquiry, or application of creativity or originality. Moreover, in many of these cases cookie
cutter solutions are available online for these projects. The pedagogy we stated above to
addresses these issues.

We planned for three laboratories for the course and we chose the concepts first as
prescribed by the pedagogy. The concepts chosen were: (i) location independent naming
service, (ii) active discovery and (iii) combination of interoperability and persistence. For
the first two we decided Java RMI as the technology for the first two and added on the
enterprise java beans (EJB) and CORBA technology for the last one. The next step is
establishing the context and provide a problem description with an explanatory diagram as
shown in the Figure 1.
The Naming Service:
 The RMI registry is based on a
client/server system. The clients
send a request to a known
destination and await a response.
All participants must be aware of
the URL of the naming service to
locate any services registered.

 Creating a distributed system eliminates
this client/server dependency. In such a
system, a client does not need to know the
exact location to send a request to. It can
broadcast a request to a network and await
its response. Knowledge of a services exact
location is no longer an issue.

Figure 1: A Location Independent Naming Service

The first project requires the students to implement a location independent naming service

P
age 8.94.5

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

using multicast discovery protocol. Sample programs are provided to enable the students
to understand the multicast concept. The project description typically has an introduction,
the brief but precise problem description, the plan, any new protocols and procedures to
be followed, approaches to be followed, overall project requirements and resources
available for the design and development of the solution. A project template as described
in Section 3.2 that provides the directory structure and environment definition is also
provided.

The second laboratory project builds upon the first project by enhancing simple discovery
of services into proactive announcement by the naming service whenever objects
representing the services are bound or unbound. In this case, the new discovery protocol
and the new behavior are provided in the project description besides the usual material.

The third laboratory project illustrates the method to address two important issues in a
single project. In this case the two are interoperability and persistence. The application is
a news server. The clients in this system are CORBA-based, working with a Java RMI
server which uses callbacks to deliver the news to the clients. Persistence is realized
through EJB technology. The details are shown in Figure 2. The initial simple client-server
architecture that is taught in a traditional course has been enhanced to have location
independence, active discovery, callback features, interoperability and persistence.
Working with these projects also exposes the students to the various technologies that
they use to solve the problems.

Figure 2: A Persistent News Server with EJB, RMI Server and CORBA Client

3.2 Project Templates

To focus the studies for these labs a set of project templates were created and distributed
to the students. The project template contains a Makefile and a directory structure that
will simply the process of building and packaging the sources. Providing this allows the
students to focus on the real task at hand, understanding the distributed systems concepts,
and not on mundane tasks of project management. Another benefit is that the instructor is
provided with a uniform interface for all the projects that can help to automate some of

P
age 8.94.6

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

the testing of the project and streamline grading them. See the sample template available at
http://www.cse.buffalo.edu/~crahen/asee

The directory structure is simple, and laid out briefly as follows. The bin directory
contains some utilities that assist in the compilation process. The classes directory hold the
class files generated from the students source code. The doc directory holds any
documentation for the project. The html directory holds the project descriptions as they
were posted on the class website. The lib directory contains the main library the students
are developing throughout the course of these projects. The sources directory contains the
source code for the library and for the demos that the students will create to test their
library.

In order to build the project, all a student needs to do is to run the GNU make utility in
the root of their project. The Makefile provided would automatically detect and compile
all sources, as well as locate any classes that need to have CORBA or RMI stubs
generated. All the students need to do is edit or create files in the source directory.

Once the sources are compiled, the students will find a jar file in the lib directory. To use
the Naming class replacement they are implementing, the use the Xbootclasspath option
to tell the Java Virtual Machine (JVM) to search their jar (java archive) for the sdk
(system development kit) classes before the standard location. For example,

java –Xbootclasspath/p:lib/project1.jar example.aClassName

can be used to run a demo that uses their projects Naming implementation.

3.3 Adapting the Pedagogy

For the initial adaptation of the pedagogy for a distributed systems course the package of
the three projects described in this paper along with the solved samples can be used. In the
subsequent offering of the course the concepts, coverage and the solutions can be varied
as needed. This pedagogy works well not only for distributed systems courses but also for
other courses in a state of flux. We have made use of this pedagogy for a Computer
Science introductory course (CS2) to introduce the concept of design patterns [8].

3.4 Successes and Failures

We practiced the pedagogy in the Distributed Systems course of 20 students in the Spring
2002. From the course evaluations we could see that students really learned many new
concepts. If the success could be measured by a more tangible metric, we found that 25%
of the class found employment because of the skills they acquired in the course. At least
two of the employers were asking for students who have taken this course. There was but
one student who found it very difficult to meet the rigors of the laboratories. Later we
found out that this student did not complete the prerequisite for the course before taking
the course and so was unprepared. P

age 8.94.7

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

In the Fall2002 we extended the methodology described in this paper to a critical course
(CS2) in our curriculum with multiple sections and an enrolment of 200 students per
semester. In general our experience was good. We are yet to analyze the data in more
detail.

4. Summary

We presented a pedagogy that helps bridge the gap between rigid curricula and rapidly
evolving technologies and application domains. The pedagogy exploits the existing
laboratory component available in almost all engineering courses. This pedagogy was
successfully used in a distributed systems courses where we measured the success by the
employability. We have summarized our successes and failures. The complete project
descriptions and sample code are packages and is available online at
http://www.cse.buffalo.edu/~crahen/asee for instructors to readily apply this pedagogy in
their courses. For future work we are planning a more comprehensive laboratory package
for the distributed systems course and also experimentation with other courses that may
benefit from this pedagogy.

Bibliography

[1.] K.P. Birman. Building Secure and Reliable Network Applications. Manning Publications Co., 1996.

[2.] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design, Addison-
Wesley Publishing Co., 2002.

[3.] Java 2 Platform, Enterprise Edition, http://java.sun.com/j2ee/, November 2002.

[4.] Java Remote Method Invocation (Java RMI): Distributed Computing for Java, White paper,
http://java.sun.com/marketing/collateral/javarmi.html

[5.] Microsoft’s .NET: Microsoft XML Web Services Platform,
http://www.microsoft.com/net/defined/default.asp.

[6.] S. Mullendar. Distributed Systems. Addison Wesley Publishing Co., 1993.

[7.] Object Management Group, The Common Object Request Broker:Architecture and Specification, 2.5
ed., Sept. 2001.

 [8.] B. Ramamurthy, and P. Ventura. A Practical Approach to Introducing Design Patterns in CS1 and
CS2'', submitted to 8th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE2003), Macedonia, Greece, June 30 - July 2, 2003.

[9.] Reading list for Stanford Univeristy’s Distrbuted Systems Course CS244B:
http://www.stanford.edu/class/cs244b/#Materials P

age 8.94.8

Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition Copyright © 2003, American Society for Engineering Education

[10.] Reading list for Georgia Tech’s Distributed Systems Course CS 7210:
www.cc.gatech.edu/classes/AY2003/cs7210_fall

[11.] P. Sinha. Distributed Operating Systems: Concepts and Design. IEEE Computer Society Press, 1996.

[12.] M.V. Steen and A. S. Tannenbaum. Distributed Systems: Principles and Paradigm. Prentice Hall
Inc., 2002.

[13.] W.R. Stevens. Advanced Programming in Unix® Environment. Additon-Wesley Pulbishing Co.,
1992.

[14.] Technical University of Vienna, The Distributed Systems Group,
http://www.infosys.tuwien.ac.at/Teaching/DS/1997/ds1/tsld003.htm

[15.] J. L. Welch, J. Welch and H. Atiiya. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, McGraw-Hill Co., 1998.

P
age 8.94.9

