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Abstract 
 
This paper describes a stress analysis problem which can be used to introduce lower division 
engineering or engineering technology students to the finite element analysis (FEA) method.  
Step by step the student sets up the matrix equation which represents the system of simultaneous 
linear equations which is necessary to solve for the unknown displacements at each of the nodes.  
They then solve this system of equations using a numerical method which is efficient for large 
systems of simultaneous linear equations.  Using these nodal displacements they calculate the 
normal and shear stresses at several different locations within the finite elements.  These stresses 
are calculated by using the stress-displacement system of equations.  This system of equations is 
also set up by the students.  All of this they can do with an inexpensive scientific calculator. 
 
 
Description of the Symbols Used. 
 
Symbol  Description 
    Aij  elements of the matrix [A] 
    a  width of the finite element 
    b  height of the finite element 
    ci  constants 
    Dij  elements of the stress-displacement matrix 
    E  modulus of elasticity 
    Fi  elements of the force matrix 
    kij  elements of the stiffness matrix 
    lij  elements of lower triangular matrix [L] 
    t  thickness of the finite element 
    ui  elements of the displacement matrix 
    ux  displacement in the x-direction 
    uy  displacement in the y-direction 
    vi  elements of the matrix [v] 
    x  coordinate along the horizontal axis 
    y  coordinate along the vertical axis 
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Description of the Symbols Used ( continued ) 
 
Symbol  Description 
                                    ( Greek letters ) 

β             aspect ratio ( i.e. b/a) 
η             dimensionless coordinate ( vertical axis ) 
ν             Poisson’s ratio 
ξ             dimensionless coordinate ( horizontal axis ) 

    σxx  normal stress in the x-direction 
    σyy  normal stress in the y-direction 
    σxy  shear stress in the xy-plane 
 
 
1.  Introduction 
 
Finite element analysis software is widely used to calculate the normal and shear stresses in 
mechanical parts and structures of many different shapes and sizes.  The types of applied 
loadings can be concentrated forces or distributed loadings or combinations of both.  A student 
being introduced to the calculation of stresses can benefit from being exposed to the terminology 
and progression of calculations used to calculate stresses by the finite element method.  Some of 
the applicable finite element terms are:  nodes, degrees of freedom, element coordinate axes, 
global coordinate system, stiffness matrices, forward reduction, and backward substitution. This 
paper does not imply that hand calculations of stress are preferable to the use of finite element 
software.  The benefit of this exercise is some insight into finite element calculation procedures. 
 
An element which is quite useful and yet not too complicated is the rectangular element with 
corner nodes.1,2  Details of this element can also be found.3,4  This element is shown in Figure 1.  
The local coordinate axes ( i.e. x and y ) are shown, as well as the nondimensional coordinates  
 

 
a

x=ξ       and      
b

y=η  

 
The displacement functions for the element in terms of the nondimensional coordinates are 
 
 ux  =  c1 ξ   +  c2  43 cc ++ ηηξ  

 uy  =  c5  876 ccc +++ ηηξξ  
 
where c1 through c8 are functions of the nodal displacements u1 through u8.  
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Figure 1.  Rectangular plane-stress finite element. [1] 
 
 
It will be shown later in this paper that these displacement functions allow for linear variation of 
the stresses in the horizontal and vertical directions. 
 
2.  Problem  Description. 
 
A square plate to be analyzed for stresses is shown in Figure 2.  Some plate displacements are 
constrained as shown.  The applied forces are as shown there.  The objective is to calculate the 
approximate σxx, σyy, and σxy stresses at the 20 points which are at the locations shown in               
Figure 2.  The plate is 20 inches by 20 inches square and is made of steel.  The material 
properties are   E = 30.0 E6 lb/in2 and ν = 0.30.  The thickness is 0.3640 inches.  The problem 
can be solved by using one-fourth of the plate (see Figure 3) because of the symmetry of the 
loading and boundary conditions about the horizontal and vertical center lines.  The stresses at 
the 5 points in quadrants I, III, and IV of the plate shown in Figure 2 can be deduced from the 
stresses at the 5 points in quadrant II ( upper right quadrant). 
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Figure 2.  Plate ( 20 in. x 20 in. ) to be analyzed for stresses. 

 

    

  Figure 3.  The quadrant, of the original plate, which will be analyzed. 
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3.  Problem Solution. 

The first step is to calculate the displacements in the x and y directions at the upper right corner.  
This is done by using the matrix equation 

[ ]K  { }u  = { }F  

which is based on the FEA method.  In this equation 
 
 [ ]K  = stiffness matrix 

 { }u  = column matrix of displacements 

 { }F  = column matrix of forces 

The element to be used is shown in Figure 1 which is taken from Reference 1.  All of the 
displacements are zero except u5 and u6.  Based upon equation 5.172 of reference 1 

 [ ]K   =  ( )2112 ν−
Et

 








2221

1211

AA

AA
 

 
where 
 

 A11  =  4β + 2 (1 -ν) / β = 5.4 0  

 A21 = A12 = ( )ν+1
2

3
 = 1.95 0  

 A22 = 4 / β + 2 (1-ν) β = 5.4 0  
 
 The β value is 1.0.  It is the aspect ratio of the rectangular element which is the height of 
the rectangle divided by the width of the rectangle. 
 

( )2112 ν−
Et

  is equal to 1.0 0  E6. 

 
Therefore, the matrix equation to be used to solve for the corner displacements is 
 









04.5095.1

095.104.5
  









6

5

u

u
 = 








0001.

0002.
 

 
Both sides of the equation have been divided by 1.0 0  E6. 
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This modest matrix equation representing a pair of simultaneous equations with 2 unknowns will 
be solved by using Choleski’s method.  This method is demonstrated because it is more practical 
than Cramer’s rule, for example, for large systems of simultaneous equations.  Using Choleski’s 
method to solve the above matrix equation, we have 

 11k  = 22k  = 5.4 0   and   21k  = 12k  = 1.95 0  

 11l   =  2/1
11k  = (5.4 0 )0.5 = 2.3238 

 21l  = 
11

21

l

k
 = =

3238.2

095.1
 0.83914 

 22l  = ( ) 5.02
2122 lk −  = 2.1670 

where ,, 2111 ll and 22l  are elements of a lower triangular matrix designated as L.  The forward 
reduction process of Choleski’s method is 
 
 Lv = F 
so 

 







1670.283914.0

03238.2









2

1

v

v
 =  








001.

002.
 

 
The first equation easily yields 
 
 v1  = 8.6066 E-4  
 
and the second equation gives 
 

v2  = 1.2819 E-4 
 
The backward substitution of Choleski’s method is 
 
 LT u = v 
 
giving 
 

  







1670.20

83914.03238.2









2

1

u

u
 = 








−
−

42819.1

46066.8

E

E
 

 
The second of these equations easily gives 
 
 u2 = 5.9156 E-5 
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and the first of these equations yields 
 
 u1 = 3.4901 E-4 
 
The student should be required to check these two values by substituting them back into the 
original two equations.  This will ensure that the ensuing stress calculations will not have to be 
repeated later due to the use of erroneous displacement values in the first stress calculation. 
Based upon equation 5.171 of reference 1 

 { }σ  = 
21 ν−

E
 [ ]D  { }u  

where 
 
 { }σ  = column  matrix of stresses 
  

 
21 ν−

E
 [ ]D  = stress – displacement  matrix 

 
 { }u  = column matrix of displacements  

In this matrix equation 

 D11 = 
a

η
  D12  =  

b

νξ
 

 D21 = 
a

νη
  D22  = 

b

ξ
  

D31 = 
( )

b2

1 ξν−
 D32 = 

( )
a2

1 ην−
 

this gives  
 

 xxσ  = 







+










− 6521
u

b
u

a

E νξη
ν

   

 σyy  =  







+










− 6521
u

b
u

a

E ξνη
ν

 

 σxy  =  
( ) ( )












 −+










 −
− 652 2

1

2

1

1
u

a
u

b

E ηνξν
ν

 

 
Substituting values for everything except  ξ and  η 
 
 σxx  =  58.55ξ  +   1151η 
 σyy  =  195.2ξ  +  345.2η 
 σxy  =  402.7ξ  +  68.31η 
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4.  Stress Distribution 
 
The linear variation of σxx in the vertical direction can be demonstrated by calculating  σxx  at 
points 1,2, and 3 on the vertical straight line ( see Figure 3 ).  The element coordinates ( i.e. ( ξ, 
η)) would be      ( 0.5, 0.1 ),  ( 0.5, 0.5 ), and ( 0.5,  0.9 ). 
 
.These calculations are as follows 
 
 σxx ( 0.5, 0.1 )  =  ( 58.55 ) ( 0.5 ) + ( 1151 ) ( 0.1 )  =  144 psi 
 σxx ( 0.5, 0.5 )  =  ( 58.55 ) ( 0.5 ) + ( 1151 ) ( 0.5 )  =  605 psi 
 σxx ( 0.5, 0.9 )  =  ( 58.55 ) ( 0.5 ) + ( 1151 ) ( 0.9 )  =  1065 psi 

This corresponds to the straight line equation 

 σxx  =  1151η  +  29.28 

Similarly, the straight line equation for  σyy  along ξ  =  0.5 becomes 

 σyy  =  195.2η  +  172.6 

and the straight line equation for σxy  along ξ  =  0.5 becomes 

 σxy  =  402.7η  +  34.2 

The linear variation along the ξ  =  0.5 vertical line is displayed in Table 1. 
 

η          σxx (psi)           σyy (psi)          σxy (psi) 
0.1              144    132               208  
0.5                    605    270               236 

                                    0.9                 1,065    408    263 
 

Table 1. Linear Variations of σxx, σyy and σxy along vertical line ξ  =  0.5 
 

The linear variation along the horizontal line formed by points 4, 2, and 5 at η  =  0.5 ( see 
Figure 3 ) can be represented by the 3 straight line equations 
 
 σxx  =  ( 58.55 )ξ  +  575.5 
 σyy  =  ( 195.2 )ξ  +  172.6 
 σxy  =  ( 402.7 ) ξ  +  34.2 
 
The linear variation along the η  =  0.5 horizontal line is displayed Table 2. 
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 ξ        σxx (psi )         σyy (psi)          σxy (psi) 
    0.1             581  192     74 
                                    0.5            605  270   236 
                                    0.9            628  348              397 

Table 2.  Linear Variations of ,, yyxx σσ and xyσ  along horizontal line η  =  0.5. 

 
5.  Summary 
 
The calculations of some approximate normal and shear stresses in a thin square metal plate has 
been demonstrated using a very coarse finite element grid.  This calculation makes use of a 
rectangular finite element with two displacement degrees of freedom at each corner node.  This 
element makes possible the calculation of stresses which vary linearly in both the horizontal and 
vertical directions.  Symmetry of the applied loads and of the boundary conditions is made use of 
to reduce the size of the model by 75%.  The metal plate approximate stresses are calculated by 
the students using the same types of matrix equations which would be solved by a computer 
using much larger systems of equations based upon several hundred or more rectangular 
elements to represent the plate.  One benefit of the exercise is the acquiring of some familiarity 
with the FEA symbols, terminology, and matrix equations.  Another benefit is an understanding 
of the mechanics of a solution algorithm for large systems of simultaneous linear equations.  
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