

A Renewable Energy Undergraduate Course Underlining the Analysis of Collected Solar Radiation

Dr. Jaime Ramos P.E., University of Texas, Rio Grande Valley

Dr Jaime Ramos has been teaching Power Engineering courses at the University of Texas Rio Grande Valley since 2005. His current research interests are Renewable Energy and Engineering Education. He is an active Professional Engineer in the state of Texas. He is a Senior Member of IEEE, and a Member of the ASEE.

Mr. Jose Ramirez, University of Texas, Rio Grande Valley

I am a Senior at University of Texas Rio Grande Valley who is working to obtain his Bachelors Degree in Science in Electrical Engineering. I have interests in renewable energy, and hope that through important research, I can help impact the world with a more efficient, more environment friendly, and more innovative energy source on which we can fully depend.

Dr. Hiram Moya, University of Texas, Rio Grande Valley

Dr. Hiram Moya earned his Bachelor of Science degree in Industrial Engineering from Texas A&M University at College Station, Texas in 1996. After working in Accenture for 5 years, he founded and became the managing Partner of HMGroup LLP. While working in his firm, Dr. Moya was also taking graduate courses from the University of Texas at Dallas, and online courses from Texas A&M University. In December 2004, he earned his Master of Science degree in Engineering Systems Management. Later, he returned as a full time student and completed his Doctor of Philosophy in Industrial and Systems Engineering in 2012.

Dr. Moya's academic experience includes a year serving as Visiting Assisting Professor at Texas A&M University, and in 2013 he has joined the Manufacturing Engineering department at The University of Texas–Pan American. In the fall of 2015, UT–Pan American, UT Brownsville, and the Health Science Center became University of Texas Rio Grande Valley, and the department's name is now the Department of Manufacturing and Industrial Engineering. Dr. Moya's research interests include Queueing Theory, Optimization, Simulation, Applied Probability, Quality, and Supply Chain Management. Some of the areas applied in the research include, Homeland Security, Healthcare delivery, web-based decision support tools, systems engineering in healthcare and process improvements. Dr. Moya has been successful in obtaining research funding from DHS to complete border security research projects.

Dr. Jose Luis Saldivar Jr, University of Texas, Rio Grande Valley

Dr. Saldivar works with first-year college students and specializes in cultural studies in education, learning theory, and "Ganas."

A Renewable Energy Undergraduate Course Underlining the Analysis of Collected Solar Radiation

1- INTRODUCTION

The growth of generating electricity through solar radiation has increased steadily over the last ten years [1]. At the same time, the cost of solar electricity has decreased steadily [2]. In the 2016 State of the Union address, President Obama mentioned that "on rooftops from Arizona to New York, solar is saving Americans tens of millions of dollars a year on their energy bills, and employs more Americans than coal -- in jobs that pay better than average" [3]. These trends support an optimistic view of the future of the solar industry for the years to come.

The first step to an engineering design of a solar facility is to obtain information regarding the solar radiation available at the site of installation under study. Several sources of information are available, such as NREL's PVWatts Calculator, NREL's solar maps, and NREL's Measurement and Instrumentation Data Center.

The first data requirement is the solar energy density, expressed in kWh/m^2 , and collected over some time period, from a month to a year. This information plus the cost of electricity, and the cost of the solar installation are necessary for the engineering design of a solar facility.

From NREL's MIDC database, the solar irradiations, in Watts/m², can be obtained minute by minute, for every day of the year. The data is more complete, and allows the analysis of the solar resource, which determines variability, clearness, and energy density.

2- RELEVANCE OF DESCRIBED EFFORTS

The focus of the Renewable Energy course imparted at this University is solar energy. In this course the authors wished to remark the importance of evaluating the local solar resource. Towards this end, a string of seven learning activities were developed, starting with three preparatory exercises. The learning objectives of the following four exercises are to train the students to use the data of NREL's Measurement and Instrumentation Data Center

The UTRGV campus has considerable infrastructure to conduct enhanced learning and research in the fields of solar energy assessment and photovoltaic electricity generation. Furthermore, some of these experiences can be emulated by other engineering schools at low cost.

3- USE of PEDAGOGICAL THEORY

The authors believe in the model of hands-on laboratories and computer simulation as the best suited method to attain the educational objectives and outcomes. Traditional pedagogical methods in engineering often favor lecture based teaching but the authors believe in the model of hands-on laboratories and computer simulation as the best suited method to attain the educational objectives and outcomes. This thinking and practice is supported by research that has focused on a hands-on, active learning approach to teaching engineering concepts [4, 5]. Active learning has long been believed to be an ideal form of instruction compared to a more passive approach to teaching particularly in fields such as education and the humanities but in science, technology, engineering and mathematics (STEM) related fields, lecture based instruction remains the predominant form of instruction. Recent research on active learning in STEM fields perhaps presents a shift in pedagogy (Freeman, et. al. 2014). Building on this work, the authors have identified active learning as the preferred form of instruction, in undertaking their research.

4- EDUCATIONAL OBJECTIVES and OUTCOMES

The following general and specific student outcomes come from UTRGV's Electrical Engineering Department.

General Educational Outcomes- it will be demonstrated that the student:

- 1- is able to use knowledge of mathematics, basic sciences and engineering to analyze (identify, formulate and solve) problems in electrical engineering
- 5- is able to communicate ideas effectively in graphical, oral and in written media.

Specific Educational Objectives- students graduating from the EE program should demonstrate:

- 1- (D)- an ability to create and use software both as an analysis and design tool, and as part of systems containing hardware and software
- 2- (d3)- familiarity with at least one high level programming language, one assembly language, and one mathematical software package.

To support the desired student outcomes, the following activities were developed for the course and to be completed by each student:

- 1- Activity at the sundial.
- 2- Clear sky insolation calculations.
- 3- Determination of solar array efficiency.
- 4- Downloading and reading data from NREL's MIDC Center.
- 5- Processing daily insolation data.

- 6- Analyzing daily insolation data.7- Final Project

Activity	Learning Objectives- to learn	Outcomes- to know or do
1- Exercises at XXX Sundial,	1- Study the sun motion:	1- Calculate the Air mass
during two days, months	altitude and azimuth angles	2- Determine the height of the
apart. At solar noon measure	2- Calculate day's declination	sundial column.
the length of the shadow cast	angle. Observe its variation	3- Understand the difference
by sundial column	during the year	between clock time and solar
		time
2- Clear Sky Insolation	1- Distinguish the different	1- Compute and compare the
Calculator	paths followed by radiation	three types of radiation
	when reaching a solar panel	3- Practice writing Excel
	2- Assess the effect of the	programs to solve
	panel's tilt angle and	engineering problems
	orientation	
3- Solar Panels Efficiency	1- Use array's electricity	1- Use sensor data to
	power and energy production	calculate the sun power
	2- Install simple global	intercepted by the array
	irradiance sensor in the plane	2- Time match received solar
	of the array	power and electricity power
		delivery
		3- Determine the efficiency
		of the array
		A_{-} Assess the power gain of
		the array by cleaning the
		nanels
4- Downloading and reading	1- Access NREL/MIDC	1- Inspect radiometer
irradiance data from	website	characteristics for Global
NREL/MIDC	2- Explore selected Solar	Horizontal and Direct Normal
	stations data	irradiance
	3- Correlate time zones and	2- Download GHI and DNI
	standard longitudes	daily data
5- Processing daily GH	1- Use MATLab program to	1- Distinguish the effect of
insolation data	analyze minute-by-minute	clouds and solar motion over
	solar data	the variable solar output
	2- Observe the variable	2- Compute clearness and
	character of solar radiation.	variability indices
	3- Observe the difference	3- Classify solar days
	between clear sky model and	according to its clear and
	measured irradiances	variable characteristics
6-Analyzing daily DN	1- Observe the different	1- Compute the daily
insolation data	shapes of GH and DN	insolation yields
	irradiance 1-min data	-

	2- Learn the significance of	2- Analyze peak DN
	the clearness and variability	irradiance as delivered by
	indexes as shown by their	measurement and calculation
	scatter plot	3- Classify solar days
	3- Use MATLab to analyze	according to its clear and
	daily insolation [kWh]	variable characteristics
	produced by GHI and DNI	
7- Collective exercise:	1- Display daily data during	1- Classify site according to
analyze irradiance data from	one month	clear and variable indices
12 selected NREL/MIDC labs	2- Compare sites using solar	2- Classify sites according to
	parameters	insolation during the month

Table 1- List of participant Activities with specific learning objectives and outcomes.

Activity # 1: Basics of Solar Trajectory in the Sky.

Participants meet at the Sundial during different months of the semester, at noon time, and perform simple measurements:

Activity # 2: Clear sky insolation calculator.

Following [6], participants created a calculator for direct, diffuse and reflected radiation, using a spreadsheet. The exercise was done for different locations, hour of day, and panel's tilt and orientation.

Activity # 3: Determination of Solar Panels Efficiency.

Endowed with an inexpensive pyranometer, participants measured the global irradiance in the plane of the array of a campus photovoltaic array. Given the solar array's power generated at the time of the measurement, the efficiency of energy conversion was determined. The impairing influence of dirt over the panel's surface was assessed.

Activity # 4- Download and read data from NREL's MIDC Center.

Twelve solar stations grouped by MIDC [7] were selected and assigned to 23 students for analysis. These stations are distributed in 5 time zones within USA and are equipped with different types of radiometers. Table 2 identify these stations. Participants downloaded daily data for the full month indicated in the Table, in the format of csv files. There are two types of files according to the radiometer type (DN or GH), and the csv files contains 961 rows, for each minute from 4 AM to 8 PM. A valuable outcome of this exercise is to explore the wealth of data available in the web for the assessment of solar resources, such as MIDC and PVWatts, and to classify the supply of radiometers and techniques available for the measurement of solar irradiance

			Radiometer	type	
_	Time	Dates	DNI	GHI	
	Zone				

Team	Solar Radiation	Acronym	GMT	2015			Ref
	Observatory						
1	NREL Solar Radiation	NREL-BMS	-7	4-1,	CHP1	CMP11	[8]
	Research Lab (BMS)			4-30			
2	NREL Vehicle Testing	NREL-RSR	-7	4-1,	Calculated	RSR	[9]
	and Integration			4-30			
	Facility RSR						
3	Solar Technology	NREL-TAC	-7	3-1,	CH1	CMP22	[10
	Acceleration Center			3-31]
	(SolarTAC)						
4	SOLRMAP University	UA-OASIS	-8	4-1,	CHP1	CMP22	[11
	of Arizona (OASIS)			4-30]
5	SOLRMAP Loyola	SOLRMAP-	-8	3-1,	Calculated	RSR	[12
	Marymount University	LOY		3-31]
	(RSR)						
6	SOLRMAP Sun Spot	SOLRMAP-	-7	1-1,	Calculated	RSR	
	Two - Swink (RSR)	SWINK		1-31			
7	Nevada Power Clark	NEV-	-8	2-1,	no data	CMP3	[13
	Station	CLARK		2-28]
8	University of Nevada -	UNEV-LV	-8	3-1,	NIP	CM3	[14
	Las Vegas			3-31]
9	Oak Ridge National	ORNL	-5	3-1,	Calculated	RSR	[15
	Laboratory (RSR)			3-31]
10	Natural Energy	NELHA	-10	3-1,	N/A	CMP11	[16
	Laboratory of Hawaii			3-31]
	Authority (NELHA)						
11	Sacramento Municipal	SMUD	-8	4-1,	Calculated	RSR	[17
	Utility District			4-30]
	(Anatolia)						
12	University of Texas	UTPA	-6	3-1,	CHP1	CMP11	[18
	Pan American			3-31]

Table 2- NREL-MIDC solar stations relevant characteristics for this course.

Activity # 5: Processing daily Global Horizontal Irradiance data.

At this stage of the course each group of participants have 30 or 31 csv files, each one containing 961 rows (minute by minute) of data of Global Horizontal irradiance, as well as a similar set of Direct Normal irradiance.

DATE	CST	Global Horizontal [W/m ²]
8/22/2015	4:00	-2.54176
8/22/2015	4:01	-2.54742
•••		
8/22/2015	7:35	162.14
8/22/2015	7:36	155.087
	•••	

8/22/2015	19:59	-2.71523	
8/22/2015	20:00	-2.71525	
T 11 2 C 4 4 620150022CH C1			

 Table 3- Contents of 20150822GH.csv file

Files can be named as *yyyymmddGH.csv* and *yyyymmddDN.csv*. Participants employed a domestic MatLab program to read and make a daily plot of the irradiance csv files, in units of [Watts/ m²], downloaded from the assigned solar stations. See Figure 1 for an example of a measured and calculated GH Irradiance from a MIDC Solar station. This way, students learned about the variable characteristics of solar radiation, distinguished the effects of clear and overcast days, and observed the positions of dawn and dusk in the graph.

The MATLab program calculated the day insolation, in Units of kWh/m², by adding the 961 irradiances, and multiplied them by $1/60 \times 1/1000$. The program also calculated, and plotted over the previous graph, the minute-by-minute irradiance calculated using a model of a clear sky atmosphere, as described by Masters [6]. Any discrepancies between the sunrise points of both graphs will indicate an offset time zone and local longitudes. The product of this Activity is 30 (31) graphs, which were labelled *yyyymmddGH.jpg*.

Activity # 6: Processing daily Direct Normal Irradiance data.

This activity is follows a procedure similar to activity # 5, but applied to direct normal irradiance csv files. The outcomes of this activity allow the students to identify the particular shape of the DN irradiance graphs when compared to the GH irradiance graph. As the MATLab program calculates the daily irradiance [kWh/m²] for activities # 5, # 6, participants learn to assess the differences of direct, global and diffuse radiation at the particular station. Figure 2 displays such a case for a clear day.

The relation among the three irradiances is given by the following equation,

$$GHI = DNI\cos(szA) + DHI$$
(1)

Where *szA* is the zenith angle.

Activity # 7- Collective Exercise. Comparing Sites with respect to their solar parameters-Two sites are compared according to three parameters: clearness index, variability index and daily insolation. The sites are at the University of Arizona SOLRMAP station, and The University of Texas Pan American station. The results are shown in Figures 3 and 4. In Figure 3, OASIS April days are *Clear*, whereas UTPA days are *Variable*. In the second figure the average daily insolation of OASIS is larger than UTPA's by 2.25 kWh/m².

Figure 2- Displays three irradiances, Global Horizontal, Direct Normal and Diffuse Horizontal

5- CLASSIFYNG SOLAR DAYS-

Global Horizontal Irradiance. Table 1 includes two important learning outcomes for the classification of solar days according to its clarity and variability. The Clearness Index is a measure of how clear is the sky during a given period; when the solar resource is available to its full at the ground level the Clearness Index would ideally have a value CI = 1. It is also possible that CI > 1.0, during those periods when the presence of clouds act as concentrators of solar rays. On the other hand, when clouds may be casting shadow over the area of interest, the solar

resource for photovoltaic power generation is poor, and *CI* would be low. If the sun light is fully blocked, then CI = 0.

To obtain the Clearness and Variability Indexes, two pieces of information are needed:

- The set of measurements of the local Global Horizontal Irradiance *GHI_{MEAS}*[k], which can be downloaded from NREL's Measurement and Instrumentation Data Center [7], for later use. The instrument takes measurements every second, writes 1-minutes averages into the database. The time stamp is Standard Central Time. It is also possible to download selected hourly data from MIDC
- 2. A calculated time-series Clear sky Global Horizontal Irradiance *GHI*_{CLEAR-SKY}[k], in synchronism with the measured *GHI*_{MEAS}[k] time series. The former is calculated in solar time; the latter are obtained in standard time. Reference [19] offers a variety of methods to calculate the clear-sky irradiance. We have chosen one due to B. Harwitz, due to its simplicity.

$$CI = \frac{\sum_{k} GHI_{MEAS}[k]\Delta t}{\sum_{k} GHI_{CLEAR-SKY}[k]\Delta t}$$
(2)

Given *CI*, Equation (1) allows the calculation of the energy, in W-h, collected by the instrument during one day. The index k runs over the number of time intervals (minutes) = 960 from 4 AM to 8 PM, in the day.

This variability index is a measure of the variability of solar radiation, which is primarily caused by two factors: the motion of the sun in the sky, and the presence of clouds, which are also moving and changing, during the day. Solar Resource Variability is explained in References [6, 20]. Variability accounts for the "noise" of the solar radiation graphs, shown in Figure 1. This phenomenon is worrisome to (electric power) system operators. A stand-alone solar farm can be knocked out quickly without advanced notice.

In Reference [20] several criteria for detecting clear sky periods are discussed. The criterion selected to be used here measures variability by calculating the vertical displacement between adjacent points of the *GHI* time series:

$$Displacement = \sum_{k} \sqrt[2]{(GHI_{MEAS}[k] - GHI_{MEAS}[k-1])^2}$$

Here, the strength of the spikes are large contributors, while smooth variations are low contributors. The *VI* formula is

$$VI = \frac{\sum_{k} \sqrt[2]{(GHI_{MEAS}[k] - GHI_{MEAS}[k-1])^{2}}}{\sum_{k} \sqrt[2]{(GHI_{CLEAR-SKY}[k] - GHI_{CLEAR-SKY}[k-1])^{2}}}$$
(3)

In (2) the units for VI are null.

Figure 3- GHI Daily Clearness and Variability Indexes at OASIS and UTRGV, April 2015.

Figure 4 – April 2015 GH Insolation at OASIS and UTRGV.

6- ASSESSMENT

During the course of ELEE 4373 Renewable Energy questionnaires were handed out to determine whether participants had increases their levels of knowledge, interest and confidence in learning engineering.

The following questions were posed in all Activities. Their responses are summarized in Table 4.

- 1- Was the purpose of this activity clear?
- 2- Were the objectives met?
- 3- Will this activity benefit me?
- 4- Were the contents included in the activity related to the objectives?
- 5- The activity has increased my interest in Solar Energy.

Question 1- Was the purpose of the activity clear?				
Activity = 1	N = 15	Mean = 1.53	Std dev = 0.14	
2	10	1.30	0.16	
3	17	1.12	0.17	
4	21	1.33	0.11	
5	19	1.16	0.12	
6	18	1.44	0.15	
7	22	1.59	0.11	
	Question 2- Were	the objectives met?		
Activity = 1	N = 15	Mean = 1.53	Std dev = 0.14	
2	10	1.10	0.19	
3	17	1.24	0.11	
4	21	1.33	0.13	
5	19	1.26	0.13	
6	18	1.22	0.20	
7	22	1.45	0.11	
	Question 3- Will this	s activity benefit me?		
Activity = 1	N = 15	Mean = 1.53	Std dev = 0.14	
2	9	1.22	0.16	
3	17	1.18	0.16	
4	21	1.19	0.15	
5	19	1.21	0.13	
6	18	1.39	0.12	
7	22	1.41	0.11	
Question 4	- The contents of this ac	tivity were related to the	objectives	
Activity = 1	N = 15	Mean = 1.53	Std dev = 0.14	
2	10	1.40	0.17	
3	17	1.29	0.12	

4	21	1.29	0.13
5	19	1.45	0.12
6	18	1.33	0.12
7	22	1.59	0.13
Question	5- This activity has incr	eased my interest in sola	ar energy
Activity = 1	N = 15	Mean = 1.53	Std dev = 0.14
2	10	0.90	0.29
3	17	0.94	0.19
4	21	1.10	0.17
5	19	1.11	0.16
6	18	0.94	0.23
7	22	1.41	0.11

Table 4- Students' response to selected questions

Participants were able to write their response using a normal Likert scale, from *Strongly* Agree = 2, to *Strongly Disagree* = -2, with *Neither Agree nor Disagree* receiving a value of zero.

The questionnaires also included questions regarding the activity. Notice from Figure 5, that the resulting mean for most questions has a value greater than 1, resulting from an answer of *Agree* or *Strongly Agree*.

Activity	Question	N	Mean	Std.
				dev.
1	I can now tell the difference between solar and clock time	15	1.40	0.14
1	I can now explain to anybody the significance of the	15	1.13	0.14
	declination angle			
2	I can now tell the importance of the collector tilt and	10	1.20	0.14
	orientation			
2	I will use this Calculator for the analysis of solar	10	1.20	0.21
	solutions			
3	I am aware of how the solar power generation data was	17	1.06	0.14
	obtained			
3	I am aware of the instrument to measure Irradiance	17	0.94	0.14
	[Watts/m ²]			
3	I can now explain how to determine and calculate the	17	1.00	0.09
	efficiency of solar panels			
4	I learned about the instruments in use to measure solar	21	1.24	0.17
	irradiation			
4	I was able to make a record of the site's coordinates and	21	1.38	0.11
	local time meridian			
4	I was able to download easily and quickly daily 1-minute	21	1.29	0.13
	records of GHI and DNI.			
5	Solar days can be classified by the use of clear and	19	1.26	0.13
	variability indexes			

5	This activity helped to understand what is a clear day and	19	1.05	0.18
	what is a variable day			
5	The daily insolation in <i>kWh</i> is a good metric to classify	19	1.16	0.14
	solar sites			
6	I understand why DN plots have a shape which is wider	19	0.95	0.18
	that GH plots			
6	Comparing DN and GH sets a base for recommending the	18	1.00	0.24
	use of concentrator or flat collector technology.			
6	The air mass travelled by sunrays determine the shape of	18	0.94	0.23
	the irradiance plots			
7	Increased my understanding of the methods in use to	22	1.55	0.11
	collect solar energy			
7	Increased my understanding to classify sites according to	$2\overline{2}$	1.55	0.11
	their solar energy input			

Table 5- Student's data used to evaluate achievement of learning outcomes.

Two open questions were also posed to them:

1- What I liked most about this activity was. Following Table lists their responses by activity

Activity	Selected responses to: What I liked most about this activity was
1	We learned how to use the solar system to our advantage. It was a great activity.
	Understanding how the sun has a different trajectory path through the year
2	The ease with which the Excel program could determine insolation if the program
	was coded correctly. Finding that we can use this for real life situations.
3	The simplicity behind the calculation of the data, and how well the idea behind the
	HW was presented. Being able to process real data and interpret the results
4	Review of all the data from different research labs across the nation. See the
	discrepancies between sunny and cloudy days
5	How we interpret the data using MatLab. It show us actual data of an actual solar
	station. Very informative. Everything
6	That we get to see the plots. The difference in data of DN and GH. Experience
	working with data (2)

7	Understanding concepts and how to interpret data to make proper judgements for
	placing solar farms. Using live data and presenting my final project report. Learning
	how renewable energy is actually harnessed and how to most efficiently and
	effectively analyze data to make engineering decisions
	Presenting my final project report

Table 6- What I liked most about the course responses

2- What I disliked more about this activity was: Following Table lists their responses by activity

Activity	Selected responses to: What I disliked most about this activity was
1	That I didn't know this before. Going to the sundial at a specific time. Many cloudy
	days didn't allow us to perform the activity (7)
2	Equations get messy. I'm not really skilled at Excel. Didn't know how to use the local
	time converter
3	The efficiency calculation was a little unclear. More information on LICOR
	radiometer and solar array power generation. It was a little difficult to understand at
	first
	Too much data. The much time taken to download and rename the files. For one month
4	you have to download 30 GH files and 30 DN files
5	The amount of tedious work to do to get the files working (2) Nothing (3) Very time
U U	consuming
	5
6	Too much time fixing Excel spreadsheets. I prefer to spend more time learning about the
	topic with problems from book or other problems. Nothing (3)
7	The collection of data took much time when making conclusions from solar. Not being able
	to physically go to data site. Nothing (3)

Table 7- What I disliked most about the course responses

At the end of the course students evaluated the instructor using the standard tool of the university. Their responses are listed in the following Table

	Ν	Mean	Std.
Question			dev.
The instructor clearly defined and explained the course objectives	16	1.44	0.16
and expectations			
The instructor was prepared to teach for each instructional activity.		1.25	0.20
The instructor communicated information effectively.		1.38	0.19

The instructor encouraged me to take an active role in my own learning.		1.38	0.16
The instructor was available either electronically or in person.		1.56	0.16
Table 8- End of course student evaluation			

7- CONCLUSIONS

The students' responses indicate the most had a positive experience from the class environment using hands-on activities to learn about renewable energy and how to use engineering in designing a solar facility. The class is exposing students to renewable energy, and the analysis of collected solar radiation.

In § 4 of this paper, Educational Objectives and Outcomes, two general educational outcomes and two specific educational objectives were outlined. After taking this course, the authors assert that students complied with them.

All activities in Table 5 were designed with a relevant content of math, basic science, and engineering to solve problems in renewable energy field. Table 6 shows that students did write Excel and Matlab code for completing the analysis called for in activities # 2, 4, 5, 6, and 7. Furthermore, for activities # 5, 6, and 7, students practiced the communication of ideas effectively in graphical, oral and written media, as also seen in Table 6.

Finally, Tables 1 and 8 include evaluations of student satisfaction. Their responses have been positive, and the authors feel encouraged to continue to use and enhance these methods

8- SELECTED LIST of ACRONYMS

CH1, CHP1- Pyrheliometers

CM3, CMP11, CMP22- Pyranometers

DHI- Diffuse Horizontal Irradiance [Watts/m²]

GHI - The Global Horizontal Irradiance [Watts/m²]

DNI - Direct Normal Irradiance [Watts/m²]

G-POA-I: Global Plane of Array Irradiance

CI - Clearness Index

VI – Variability Index

NREL: National Renewable Energy Laboratory

MIDC: Measurement and Instrumentation Data Center

NIP- Normal Incidence Pyrheliometer

POA: Plane of Array

RSR- Rotating Shadow Radiometer

 Δt - Time Interval

SC: Solar Constant = 1,367 Watts/m²

szA- Sun Zenith Angle

UTRGV- University of Texas Rio Grande Valley

 μ - mean

 σ – standard deviation (N-1)

9- BIBLIOGRAPHY

1- Electric Power Monthly, US Energy Information Administration. http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01_a. Retrieved January 26, 2016

2- G Barbose, Tracking the Sun VI- An historical summary of the installed price of photovoltaics in the United States from 1998 to 2012. eScholarship University of California LBNL Paper LBNL-6350E, scholarship.org/uc/item 2j2888zv, 2014. Retrieved January 26, 2016
3- The State of the Union Address of President Barack Obama. (2016). Retrieved January 22, 2016, https://www.whitehouse.gov/the-press-office/2016/01/12/remarks-president-barack-obama-%E2%80%93-prepared-delivery-state-union-address.

4- S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and M. P. Wenderoth. Active learning increases student performance in science, engineering, and mathematics. PNAS, (June 2014) vol. 111, no. 23 www.pnas.org/cgi/doi/10.1073/pnas.1319030111

5- P. H. Kvam. The effect of active learning methods on student retention in engineering statistics. The American Statistician. (May 2000) vol. 54, no. 2 <u>www.jsotr.org/stable/2686032</u>

6- Masters, G. Renewable and Efficient Electric Power Systems. Second edition, IEEE Press, 2013

7- http://www.nrel.gov/midc. Website consulted in 01/22/2016

8- Andreas, A.; Stoffel, T.; (1981). NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data); NREL Report No. DA-5500-56488. <u>http://dx.doi.org/10.5439/1052221</u>

9- Lustbader, J.; Andreas, A.; (2012). NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data); NREL Report No. DA-5500-56490. <u>http://dx.doi.org/10.5439/1052223</u>

10- Andreas, A.; Wilcox, S.; (2011). Solar Technology Acceleration Center (SolarTAC); Aurora, Colorado (Data); NREL Report No. DA-5500-56491. <u>http://dx.doi.org/10.5439/1052224</u>

11- Andreas, A.; Wilcox, S.; (2010). Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data); NREL Report No. DA-5500-56494. http://dx.doi.org/10.5439/1052226

12- Andreas, A., Wilcox, S.; (2012). Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data); NREL Report No. DA-5500-56502. <u>http://dx.doi.org/10.5439/1052230</u>

13- Andreas, A.; Stoffel, T.; (2006). Nevada Power: Clark Station; Las Vegas, Nevada (Data); NREL Report No. DA-5500-56508. <u>http://dx.doi.org/10.5439/1052547</u>

14- Andreas, A.; Stoffel, T.; (2006). University of Nevada (UNLV): Las Vegas, Nevada (Data); NREL Report No. DA-5500-56509. <u>http://dx.doi.org/10.5439/1052548</u>

15- Maxey, C.; Andreas, A.; (2007). Oak Ridge National Laboratory (ORNL); Rotating Shadow band Radiometer (RSR); Oak Ridge, Tennessee (Data); NREL Report No. DA-5500-56512. http://dx.doi.org/10.5439/1052553

16- Olson, K.; Andreas, A.; (2012). Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii (Data); NREL Report No. DA-5500-64450. <u>http://dx.doi.org/10.7799/1183461</u>

17- Andreas, A.; Bank, J.; (2009). Sacramento Municipal Utility District (SMUD): Rotating Shadow band Radiometer (RSR); Anatolia - Rancho Cordova, California (Data); NREL Report No. DA-5500-56513. <u>http://dx.doi.org/10.5439/1052554</u>

18- Ramos, J.; Andreas, A.; (2011). University of Texas Pan-American (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data); NREL Report No. DA-5500-56514. http://dx.doi.org/10.5439/1052555

19- 8- M. J. Reno, C. W. Hansen, J. S. Stein, Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis, SAND2012-2389, 2012 20- J. S. Stein, C. W. Hansen, M. J. Reno, and The Variability Index: A new and novel metric for quantifying Irradiance and PV output variability, World Renewable Energy Forum, Denver, CO, 2012