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Abstract

A new text was selected which teaches programming and uses the 80x86 family assembly
language as the vehicle. Laboratory exercises have been written or revised to support the text.
Students assemble and run the programs on new networked Microsoft Windows NT personal
computers. The programs are assembled with Microsoft MASM 6.11. Microsoft Visual C++
Professional version 4.0 is used to assemble the software when assembly is mixed with C.

I. Introduction

TECH 3251, Assembly Language Programming, is a required first semester senior class in
Computer Engineering Technology. Other engineering technology students take the course as an
elective. The class has three 55-minute lecture periods and three hours of unscheduled laboratory
each week during a 14 week semester. The students receive 4 hours credit for the course.
Prerequisites include programming in C and Pascal, and an introductory microprocessors course
on the 80x86 family of processors. Assembly Language Programming is offered every fall
during the day and every two and one-half years in the evening.

A new text1 was selected for the course to replace the previous text2, and the laboratory exercises
were revised to accommodate the new text. Laboratory exercises are the focus of the course.
Grades assigned to the laboratory exercises count one-third of the course grade. The exercises
emphasize programming and the reuse of existing code. Lectures are used to go over reading
assignments and discuss some short problem and question assignments. Often, the students write
short assembly language programs in class that help them do the laboratory exercises. The
solutions to the in-class programming exercises are critiqued in class.

II. Grading

Table 1 shows the grading criteria used for the laboratory exercises. Up to 100 points can be
earned for each assignment. Assignments turned in late receive no credit. The more a student
accomplishes and the higher the quality of the accomplishments, the better the score. For
example, up to 10 points can be earned for high quality documentation. All procedures will have
a header block that describes a) what the procedure does, b) the procedure’s inputs, c) the
procedure’s outputs, and d) what functions or procedures are called. Significant action blocks or
data definitions will have adequate comments if they are not self-documenting. (e.g. NOMATCH
DB “Strings do not match.” is an example of a self-documenting data definition.)
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All errors are identified on graded laboratory exercises, and only the first two exercises are not
collected and graded. Errors made by two or more students are discussed in class when graded
exercises are returned.

The University mandates a two-hour final exam for the course. Two 55-minute exams are given
during the semester to help prepare the students for the final exam.

Each 55-minute exam has a programming problem based on the laboratory exercises that counts
approximately 25% of the points available on the exam. Any student who understands the
laboratory exercise solutions should be able to earn most of the points for the problem.

At least one problem on a 55-minute exam will have code that has one or more errors in it.
Students are expected to correct the code. Again, any student who understands the laboratory
solutions should be able to earn most of the points for this type of problem.

Twenty-five percent of each exam consists of sentence correction problems3. Each sentence
states or misstates a major concept of assembly language programming. The sentence correction
problems and the graded written comments on the laboratory exercises are the writing samples
that are collected and graded to comply with both ABET’s (Accreditation Board for Engineering
and Technology) and the University’s writing expectations.

The remaining exam problems are short answer questions based primarily on concepts that
should have been learned doing the laboratory exercises. A final exam is equivalent to two hour
exams and is counted that way in course grading.

III. Exercises

Table 2 list the exercises used during the Fall 1998 semester. Several of the exercises are new,
but some are revisions of existing exercises.

Exercise 1 expects students to enter a working program with Microsoft Programmers
WorkBench (PWB), assemble the program with Microsoft MASM 6.11, and run the program on
Microsoft Windows NT. Most of the students have already done this in a previous class.
However, some junior college student may not have had this experience, or at least have not
assembled 80x86 mnemonics with MASM 6.11 and run the machine code in a Windows NT
environment.

The students are given procedures that will perform character and string input and output through
the keyboard and console of an IBM PC compatible computer. The listing for the procedures
includes a main program that permits strings to be entered and printed on the console, and
assembler directives for the data, code, and stack segments that the students can use in their own
programs. The students will find the procedures useful for getting data from the keyboard and
printing results on the console in later exercises. This exercise is not collected and graded since a
student must complete the exercise to successfully complete the remaining exercises.
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The students trace the .EXE file from Exercise 1 with Microsoft CodeView in Exercise 2. The
.LST file from Exercise 1 is used to determine where to insert break points, single-step through
the program, trace loops, examine registers, and examine memory locations. Next, the students
reassemble the program with the /Zd option and examine the machine code with the partial
symbolic information produced by this option. Finally, the students reassemble the program with
the /Zi option to get line numbers and complete symbolic information, and examine the code
with the complete information.

The students use immediate addressing and most of the data segment addressing modes to print a
test message on the screen in Exercise 3. They are told, with words, how to write the statements
that get each character from a string and print the string on the console. The purpose of the
exercise is to give the students practice in coding and using the complicated data segment
addressing modes in the 80x86 family of processors.

Exercise 4 is the first real programming exercises. Students are expected to modify the program
supplied with Exercise 1 so that the program will a) ask the user what string they wish to enter,
b) skip a line, c) get the string from the user, d) skip a line, and e) print the string supplied by the
user.

The students write and test two procedures in Exercise 5. One will print a string from the code
segment. The other will print a string from the extra segment. The purpose of the exercise is to
give the students practice using segment override prefixes and setting up the segment directives
for the extra segment. A side effect is to teach the students that code and data in the code
segment cannot be mixed without caution. Data in the code segment must be out of the flow of
execution.

A colored rectangle is drawn on the video display in Exercise 6. The students are expected to
write and link several procedures. One will set the display to the proper mode (video or text).
Another procedure will put a pixel on the graphics display. A third will draw a horizontal line on
the graphics display. A fourth procedure will draw a vertical line. The linking of procedures is
fairly complicated for students at this stage of their career, particular the weaker students.
However, the visual output seems to motivate many of the weaker students to at least produce a
working solution, if not a well designed working solution.

A program is written for Exercise 7 that asks the user for two strings, then compares the strings
to determine if they are identical. The students are expected to use two 80x86 family string
instructions. SCASB is used to scan each string, locate the end, and determine the length of each
string entered. (Strings entered with the functions supplied with Exercise 1 end with a null.)
CMPSB is used to compare the strings character-by-character. The students get experience
overlaying the data and extra segments and using the REPx prefix for string instructions.

In Exercise 8 the students convert an ASCII (American Standard Code for Information
Interchange) character for a digit to BCD (Binary Coded Decimal), then convert the BCD digit
back to ASCII and print the result. The students must use CodeView to verify their program is
working, otherwise it is easy to print the input data and believe the program is working. The
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program is a simple test of the use of arithmetic and/or logical instructions in addition to being a
good application for CodeView.

The students use a look-up table in Exercise 9 to convert an ASCII character for a hexadigit
entered through the keyboard to its binary value, then back to its ASCII equivalent which is
displayed on the console. Again, the exercise is a good application for CodeView. The students
use the 80x86 XLAT instruction to do the conversion from binary to ASCII and an exhaustive
search using SCASB to do the conversion from ASCII to binary. Failure to find the ASCII value
in the table is a good error check technique for data entry. Only one table of ASCII values for 0
to F is needed.

Exercise 10 prepares the students for mixing assembly with higher level languages. Exercise 8 is
repeated. However, arguments are passed on the stack to procedures that do the conversions, and
the return values are also passed on the stack. Students have the option of having either the
calling routine or the procedure clean up arguments from the stack. Register indirect addressing
using the BP (base pointer) registers is used by the procedures to address the arguments and
return values on the stack.

The students combine C and assembly language in Exercise 11. In-line assembly with a compiler
directive, such as asm, was used in the past with the Borland C/C++ compilers. Unfortunately,
problems were encountered using the in-line assembly directive, _asm, with the Microsoft Visual
C++ Professional Version 4.0 compilers installed on the new equipment. Not all assembly
language mnemonics compile correctly when preceded by _asm. None of the BIOS or MS-DOS
interrupt instructions executed properly. There were no compiler errors, but Windows NT
intercepted the interrupt calls and terminated the program. The same problem occurred with
Windows 95. Many other instructions seem to execute correctly. As this is written, an acceptable
patch is not available from Microsoft.

IV. The Future of the Course

If recent plans are approved, TECH 3251 will cease to be a required course, probably after the
Fall 1999 semester. Approximately the first one-third of the course will be incorporated into the
course on microprocessors. Most of the last one-third of the course will be incorporated into a
course on computer interfacing. Assembly Language Programming will become an elective,
although it probably will not be offered after the Fall 1999 semester.

V. Conclusions

The techniques and the exercises have proven effective. Exercise 2, on the use of CodeView, and
Exercise 11, on embedding assembly programming in Visual C++ Professional, still need
revision. A permanent solution for Exercise 11 may be to compile a main program in C,
assemble interface routines in assembly, and link the modules before execution.
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Table 1
Program Grading Criteria

Feature                              Points

1. Listing of program submitted on time                20
    (No partial credit)

2. Test results submitted on time                            20
    (No partial credit)

3. Program works as submitted                               20

4. Program style                                                      20

    a. Efficient use of language                     10

    b. Adequate remarks or comments          10

5. Program tests                                                      20

    a. Adequate test plan                               10

    b. Execution of that plan                         10
                                                                              ----
                    Total Points                                      100
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Table 2
Laboratory Exercises for the Fall 1998 Semester

1 - Using the Editor and MASM

2 – Codeview

3 – Data Segment Addressing Modes

4 – Getting Strings from the Keyboard and Printing Them on the Console

5 – Segment Override Prefixes

6 – Video Displays

7 – String Instructions

8 – ASCII to Binary Coded Decimal and Binary Coded Decimal to ASCII Conversion

9 – Converting an ASCII Character for a Hexadigit to Binary and an Unpacked Hexadigit to
ASCII Using Look-Up Tables

10 – Stack Addressing and Procedures

11 – Embedding Assembly Language in C
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