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We present seven motivational elements for learning outside the classroom and illustrate these within the 
context of a particular undergraduate research project. The majority of this research was actually performed 
after completion of the required course – motivated solely by the desire of the student to go further with the 
experiment and learn more about the topic. This delightful circumstance is not without precedence in our 
department; so we searched for (and found) what we believe are the underlying, common, key motivational 
elements: (1) genuine interest of the instructor; (2) good instructor-student rapport (the instructor’s genuine 
interest should spread naturally to the student, without the pressures that far too often occur in graduate 
research); (3) a simple, but adequately accurate, theoretical model of the problem; (4) a “mystery” to be 
resolved; (5) some “gee-whiz” aspects in the experimental apparatus (such as magnetic levitation devices, 
lasers, etc.); (6) actual quality in the measurement capability of the instruments; and (7) the capability of 
“closing the loop” between the experiment and a simple theory.  
Herein, we illustrate these seven points within the context of a specific project – one that explores many 
novel aspects of signal loss in optical fiber and in free-space optical links. Signal losses always increase 
exponentially with length in “cable,” whether the cabling is coax, twisted pair, etc., or even optical fiber. In 
“radio” however, the losses only increase with the square of the length. So that, beyond some length, radio 
will always win. This “crossover” length depends on the wavelength of the source; and the transmitting and 
receiving antenna gains. The question then arises – how do we describe the effective “antenna gains” of an 
infrared LED (or laser) and an infrared detector? A simple means of relating this to the information quoted 
on typical data sheets is presented and tested experimentally. We also present empirical data on the length 
dependence of a free-space infrared link; and fiber losses in Erbium-doped-fiber. Many “mysteries” were 
discovered and resolved in this work; whereas other “mysteries” remain unresolved. In both cases, we note 
how these illustrate our seven point motivational paradigm. 
 
 
Introduction 
The primary educational objective of this paper is to try to understand what factors 
facilitate “learning outside the classroom,” within the context of an undergraduate 
research project. This project stemmed from a student’s interest in a particular topic that 
originated as part of a required course (ECEN 420 Electrical Communication Circuits) in 
the Engineering Technology Department at Kansas State University. The undergraduate 
research was performed, without college credit, after completion of the required course, 
solely motivated by the desire of the student to go further with the experiment and learn 
more about the topic. This delightful circumstance is not without precedence in our 
department; so let’s examine some of what we believe are the underlying, common, key 
motivational elements: (1) genuine interest of the instructor; (2) good instructor-student 
rapport (the instructor’s genuine interest should spread naturally to the student, without 
the pressures that far too often occur in graduate research); (3) a simple, but adequately 
accurate, theoretical model of the problem; (4) a “mystery” to be resolved; (5) some 
“gee-whiz” aspects in the experimental apparatus (such as magnetic levitation devices, 
lasers, etc.); (6) actual quality in the measurement capability of the instruments; and (7) 
the capability of “closing the loop” between the experiment and a simple theory. 
 



Herein, we illustrate these seven points within the context of a specific project – one that 
explores many novel aspects of signal loss in optical fiber and in free-space optical links. 
These same seven principles have also been useful in other undergraduate research 
projects in the Engineering Technology Department at Kansas State University. Their 
application to a magnetic levitation control system, for example, is a work in progress [1]. 
  
Physical Nature of this Project 
One of the most compelling parts of Carlson’s classic text, “Communication Systems,” 
[2] (now in it’s 4th edition) is the comparison of free-space propagation (e.g., “radio”) 
path losses to losses incurred by “cabling.” This classic issue takes on an interestingly 
modern twist when one considers the comparison of optical fiber losses (i.e., glass/fiber 
rather than copper, “cabling”) to those of free-space propagation at the same wavelength. 
Currently, in the telecommunications industry, the preferred wavelengths [3] are around 
1550nm (the minimal dispersion point of most optical fibers) which is in the infrared 
portion of the spectrum, at frequencies just below that of visible light. In any type of 
cabling (including optical fiber) the losses increase exponentially with distance; in 
“radio” (at any frequency, including optical) however, the losses only increase with the 
square of the distance. Thus, beyond some distance, radio will always “win.” This seems 
counterintuitive: wouldn’t you always do better by focusing your light into a fiber where 
it’s confined by total-internal-reflection? The mathematics of this counterintuitive result 
therefore whets the students’ appetite, in a modern context. Another motivating curiosity 
arises as follows. Since the formula for calculating radio losses naturally involves the 
gain of the transmitting and receiving antennas, how do we account for these at optical 
frequencies – when the transmitter is a laser or LED and the receiver is a photodetector 
(instead of a dipole or a horn or a dish or another standard radio antenna)?       
 
A Simple Model for the Effective Antenna Gains of Optical Devices 
A standard (i.e., “electrical”) transmitting antenna focuses electromagnetic radiation into 
preferred directions (relative to an isotropic radiator) known as a radiation pattern. A 
receiving antenna likewise has preferred directions of receiving these waves. This is true 
independent of the frequency of the electromagnetic wave, thus we ought to be able to 
use the radiation patterns of optical devices to estimate their effective antenna gains. The 
details of near-field and far-field diffraction can be rather involved [4] and often these 
models still miss the mark (due to “re-radiation” etc.) when compared to effective 
antenna gain measurements [5]. Let’s consider a very simple model as follows, for 
scaling purposes, which should hold in the far-field. The majority of power in a typical 
radiation pattern is roughly within an angle D/λθ ≅ , where λ  is the wavelength and D  
is the dimension of the antenna (typically the diameter). We can of course be more 
precise if we know the exact radiation pattern, but this is a good “rule of thumb” in the 
far-field (for example, in the diffraction of a plane wave from a square apperature, with 
θ defined as the location of the first field null, over 96% of the beam energy is within this 
angle [3]). It is important to note in passing however that this simple scaling model 
assumes that we are in the far-field of the antenna, i.e., that we are at a distance, z, which 
is far enough away from the emitting (or receiving) surface such that ( ) λ/2Dz > .  
 



On the data sheets of infrared LEDs, lasers, and detectors the dimensions (D) of the 
emitting or detecting surfaces are very rarely provided. Fortunately however, these data 
sheets typically do provide emitting and detecting angles and we need only know these 
angles to estimate the effective gain via ( ) ( )22 // θπλπ ≅= DG . Thus, we would not 
need to know D if we know θ , provided that we are indeed in the far-field limit! 
Unfortunately the definition of the far-field (defined above) does inherently involve D 
(via λ/2D , rather than just λ/D , which would only involve θ ). Therefore, we cannot 
know if we are in the far-field limit in the first place, from the information available on 
the typical infrared data sheets. This however adds to the “mystery” which serves to whet 
the instructor’s and student’s desire to resolve the issue experimentally. In our 
experiment we use an infrared LED (Fairchild’s QED121 with a peak wavelength at 
880nm) as our transmitter; and a phototransistor (Fairchild’s QSD122) as our receiver. 
From the data sheet, our transmission angle is %9± , so our transmitting antenna gain (in 
decibels) would be ( ) ( ) dBG TT 02.269/180log20/log20 1010 === θπ . Likewise the 
detector’s data sheet gives a reception angle of %12± , so our receiving antenna gain (in 
decibels) would be ( ) ( ) dBG RR 52.2312/180log20/log20 1010 === θπ . Note in passing 
that these antenna gains are comparable to those of simple radio-frequency (“electrical”) 
antenna gains, but how are we to know if we are in the far-field where this simple model 
would hold true? One possibility might be to look for a deviation from the 

2/1 z dependence on the distance between transmitter and receiver that one would 
anticipate in the far-field.  
 
In terms of the educational and motivational elements, notice that the above model meets 
the conditions of: (3) it is intuitively appealing and simple; (4) it leads to a mystery, yet to 
be solved; and (5) it involves modern technology. This in turn leads to the satisfaction of 
conditions: (1) that it is useful and innovative enough to be interesting to the instructor; 
and (2) that in addition to the innovative aspects, it is simple enough to capture the 
understanding and therefore the interest of the student. We will discuss conditions (6) and 
(7) in the last section, under experimental results.  
 
Fiber versus Free-Space Losses 
Path loss (or the free-space loss) of a radio link is calculated in the far-field limit to be 
( ) ( )( )RT GGz /1/1/4 2λπ . Note the quadratic dependence of this loss on, z, the distance 
between transmitter and receiver. Thus, even if our estimations of the transmitting and 
receiving antenna gains, TG and RG , are incorrect; we should still see this dependence on 
z if we are in the far-field.  
 
The path loss of a cable (be it “copper” e.g., coax etc., or optical fiber) however has an 
exponential dependence on z, which can be written as zβ10 , where 10/βα =  is the 
number of dB of loss per kilometer, if z is in kilometers. In other words, the loss in an 
optical fiber, on a decibel scale, is zα , so that the dB of loss doubles when you double 
the length of fiber. 
 



In contrast, the radio loss in dB is ( ) ( ) ( )RTGGz 101010 log104/log20log20 −− πλ . So that 
the dB of loss only increases by 6dB, when you double the length of a radio hop. 
Thus, beyond a certain distance, radio will always have less loss. For example say the 
loss of both is 10dB at some length. Doubling this length brings the fiber loss up to 20dB 
whereas the radio loss is now at 16dB. The further we go in distance, the more dramatic 
the effect. Consider 40 vs 16+6=32, then 80 vs 32+6=40, etc. The exponential growth of 
fiber loss eventually dominates the polynomial growth of free-space losses. The distance 
at which this happens depends of course on the loss coefficient, α , of the fiber (as well 
as the antenna gains). Values for α in fiber these days however are quite low, perhaps 
1.7dB/km, so that even with antenna gains of 42dB, at 880nm the “crossover distance” 
(where radio starts to beat fiber) is almost 100km.  
 
Nevertheless, the fact that a crossover distance exists at all seems a bit mysterious to 
students [motivational element (4)]; but they can see that it’s true from the simplicity of 
the model [element (3)]; and the fact that it can be applied to cutting-edge technology 
[element (5)] all help to generate interest in “learning beyond the classroom.” When these 
factors are combined with the experimental elements [(6) and (7)] we foster an 
environment for “experiential learning,” as illustrated in the following sections.   
 
Experimental Results 
Although our main purpose here is to test the z dependence of the free-space, i.e., radio 
losses at infrared frequencies (in order to determine if we are in the far-field or not) we 
also performed a brief experiment on the losses in fiber. The educational reason for 
performing this part of the experiment was primarily to further incorporate motivational 
element (5) – the “gee-whiz” or hi-tech component of the experimental apparatus. Also, 
for practical reasons, we would have had difficulty in coupling our infrared LED source 
(running at 880nm) into our fiber apparatus (optimized for operation at 1550nm). Thus, 
we utilized a much more expensive, laser diode source with a “pig-tailed” fiber coupling 
and an optical intensity stabilizing circuit, for the fiber loss measurements (at 1550nm). 
This also incorporated motivational element (6) by utilizing apparatus of genuinely 
superior measurement capability. In addition to the increased coupling capability to fiber, 
and the use of a laser instead of an LED, this allowed us to not only operate at a 
wavelength of current interest to the telecommunications industry but also allowed us to 
use Erbium-doped fiber for the experiment. Erbium-doped fiber is of particular interest 
these days since it is utilized extensively as Erbium-doped fiber amplifiers in 
telecommunications networks.  
 
By connecting three different sections of Erbium-doped fiber (each of 1 meter length) we 
confirmed the anticipated 1.32dB/km of loss, within 0.3 dB, (incorporating the 0.25dB of 
the connector insertion losses) … thus, no “mysteries” were encountered here – thereby 
incorporating motivational element (7) – closure between experiment and simple theory.  
When we looked at the free-space losses however, we found something quite different 
than our simple models had predicted.  
 
 
 



Figure 1 presents the detector voltage (proportional to the incident optical power) as a 
function of the distance between the source and detector (on a linear scale). In this plot 
we clearly see the noise floor (set by ambient infrared radiation from lights in the room 
and dark current in the detector etc.) ensuing shortly after a distance of about 7cm. 
 

 
Figure 1. Detector voltage vs distance (in centimeters). 

 
 
 
In Figure 2, we display this data on a log-log plot (i.e., dB scale) out to a distance of 1cm, 
(before the noise floor ensues) along with an LMS (least-mean-squares) fit to the 
experimental data. 
 
 
 
 

 
 

Figure 2. Detector voltage vs distance on a log-log plot 



 
 
 
The slope of this LMS fit to a line is -.0.9, which is substantially different than the 
anticipated slope of –2, which should occur if we were indeed in the far-field. It should 
be noted that (commensurate with motivational element (6) – the use of accurate 
instrumentation) we made many refinements during this experiment. These refinements 
ranged from the elimination of “wobble” in the mechanical supports of the LED and the 
photodetector (via the use of vertical post mounts and an optical rail) to the elevation of 
each, in order to reduce the possibility of back-scattering from the environment. We also 
explored the use of apperatures and better detectors…all resulting in a curve fit to a line 
of slope much closer to –1 than the far-field prediction of –2. Currently, my new students 
and I are involved in further experiments in hopes of resolving this issue – our 
enthusiasm only further enhanced by the desire to solve “mysteries.” 
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