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A Simple Analytical Method for Force Analysis of Planar 

Fr ictional Tree-Like Mechanisms 
 

 

Abstract 
 

A purely analytical method for force analysis of one degree-of-freedom planar frictional tree-like 

mechanisms (which constitute a large fraction of planar mechanisms) has been developed herein. 

The method includes linear friction (friction at sliders, not revolving joints) and uses the 

vectorial illustration of mechanisms, which is widely used for kinematic analysis of mechanisms 

too. In this method, a joint-force is determined either via its decomposition into the direction of 

its adjacent links or from the equilibrium equations of one of these links. Unlike the conventional 

analytical method which leads to a system of simultaneous equations, this method leads to only 

one linear algebraic-equation or one simple vectorial-equation at a time. Force analysis of planar 

frictionless mechanisms has always been tedious and time consuming, let alone frictional 

mechanisms, but this method has proved to be simple, straightforward and quick. It is therefore a 

most suitable tool not only for designers but for teaching force analysis of mechanisms too, as it 

downgrades the project-type problems to the level of classroom tutorials. The teaching 

significance of the method further surfaces when the reader would recall that textbooks have 

mainly focused on frictionless mechanisms due to the complexity of frictional mechanisms. 

 

Keywords: Mechanisms, Planar mechanisms, Frictional mechanisms, Kinetic analysis, Force 

analysis, Kinetostatic analysis. 

 

Nomenclature 
 

ic  = angular acceleration of link i 

ah  = angular position of the velocity of joint, say, A 

ii  = angular position of the acceleration-vector of centroid of link i 

ai  = angular position of the acceleration of joint, say, A 

an  = angular position of the force at joint, say, A 

io  =  coefficient of friction between link i and the foundation 

ijo  = coefficient of friction between links i and j 

is  = angular-position of position-vector iR
E

 depicting link i  

iy  = angular velocity of link i 

aa
E

 = acceleration vector of joint, say, A 

ia
E

 = acceleration vector of the centroid of link i 

A
E

 = force at joint A (joint-force A
E

. Similarly joint-force B
E

at joint B etc.) 

iA
E

 = component of joint-force A
E

along link i 

if
E

 = inertia-force vector of link i 

if  = inertia force of link i = iam
i

/  

F
E

 =  input-/output- (external) force 

iF
E

 = normal constraint-force applied on link i by the foundation 
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ijF
E

 = normal force applied on link j by link i 

iF
E
|  = frictional force applied on link (slider) i by the foundation (link 1) 

ijF
E
|  = frictional force applied on link j by link i 

iJ  = polar moment-of-inertia of link i about its centroid Gi 

im  = mass of link i 

M = moment 

n = total number of links including the foundation (link 1) 

iq  = inertia torque of link i  = iiJ c/  

2n  = rpm of link 2 (+ve if ccw, and Îve if cw) 

iQ
E

 = external force on link i, if any 

iR  = length of link i 

iR
E

 = position vector of link i 

T  = input-/output- (external) torque 

iT  = resultant external torque on link i, if any 

av
E

 = velocity of joint, say, A 

iv
E

 = velocity of the centroid of link i 

All angular positions are measured from x-axis. 

 

Introduction 
 

Analytical force (or kinetic or kinetostatic) analysis of mechanisms has always been one of the 

lengthy and time-consuming problems of mechanical engineering. In the past few decades, a 

number of methods have been developed for force analysis of frictionless mechanisms, but only 

a few researchers have embarked on frictional mechanisms due to its further complexity. The 

subject is still under research as no efficient and widely accepted method is yet available for this 

purpose, especially for teaching. 

 

Lauw and Kinzel
1
 developed an interactive computer-aided force analysis program (PORKIN), 

which includes Coulomb friction as well. Muir and Neuman
2
 introduced a formulation for 

dynamic modeling of multibody robotic mechanisms incorporating friction (stiction, Coulomb, 

rolling and viscous friction), based on Newtonean dynamics, kinetics and the concept of 

force/torque propagation and frictional coupling at a joint, using extensive matrix-vector 

dynamics formulation to solve the systems of linear algebraic equation. Verriest
3
 developed a 

method for kinematics and dynamics of a highly structured special-purpose robot, where 

direction-fgrgpfgpv"htkevkqp"cnnqyu"uwej"c"uvtwevwtg"vq"ÒetcynÓ"kp"xctkqwu"oqfgu0 Brost and 

Mason
4
 described a graphical method for analyzing the motion of a rigid body subject to 

multiple frictional contacts in a plane. Kraus et al
5
 simulated the dynamic systems using rigid 

body model with rolling and sliding unilateral contacts for planar systems.  Song et al
6
 employed 

a general model of contact compliance to derive stability criterion for planar mechanical systems 

with frictional contacts, introducing a smooth nonlinear ftkevkqp"ncy"vq"crrtqzkocvg"EqwnqodÓu"
friction where the CouloodÓu"htkevkqp"ncy"ku"fkueqpvkpwqwu0"Uvqgpguew"cpf"Octijkvw7

 investigated 

the effect of prismatic joint inertia on dynamics of planar kinematic chains with friction, using 

NcitcpigÓu"gswcvkqpu."gzgornkh{kpi"vjg"ghhgev"qh"vjg"rtkuocvke"lqknt inertia on the dynamic 

parameters of planar mechanisms. 
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The reviewed papers
1-7

, though dealt with the investigation of friction on rigid body/multibody 

systems, illustrated no specific method of application to planar frictional mechanisms. Hence 

none of them were capable of being adopted as a foundation for this research. 

 

In majority of textbooks on Theory of Machines and Mechanisms, graphical methods have been 

adopted as a major tool for force analysis of planar mechanisms, hardly touching on frictional 

mechanisms. This is due to the fact that analytical methods are lengthy and/or require computing, 

and no specific method has yet demonstrated a suitable and efficient capacity for class room 

applications.  

 

With the advent of electronic computing devices some authors of textbooks were encouraged to 

describe analytical methods too. However, their approaches are mainly the analytical solution of 

the same equilibrium equations solved by graphical methods, applied to special cases of 

mechanisms, mostly four-bar mechanisms. For instance, Shigley and Uicker
8
 demonstrated the 

force analysis of a four-bar linkage using a vectorial approach and Mabie and Reinholtz 

illustrated the application of a matrix method
9
 and a complex-numbers method

10
 to solve the 

equations of motion of some four-bar mechanisms. Norton
11

 demonstrated the solution of matrix 

equation of motion to some slider-crank and four-bar mechanisms. Waldron and Kinzel
12

 simply 

solved the system of simultaneous equations of motion for different links. In addition to 

graphical method, Erdman et al
13

 also employed the solution of matrix equation of motion and 

demonstrated the method by applying to a four-bar mechanism; they approached the problem by 

superposition method as well, both graphically and analytically. Myszka
14

, like Waldron and 

Kinzel
12

, generated and solved equilibrium equations and demonstrated the method on an aircraft 

landing gear (again a four-bar mechanism). 

 

It can be seen that these approaches generally suggest that for each individual mechanism the 

equations of motion have to be set up and organized such that they lend themselves to manual or 

computer solution. Needless to say that the manual solutions are lengthy and time-consuming 

while the necessity of computers in the classroom for computerized solutions discourages both 

teachers and students. 

 

Among all teaching texts, the one by Hall, Jr.
15

 more comprehensively covered the analytical 

approach to Kinematic and Force Analysis of Frictionless Mechanisms. On kinematic analysis, 

he extensively illustrated the application of the vector loop approach and on the force analysis he 

explained the method of equation of motion as well as the matrix arrangement of equations of 

motion. Unlike the authors of other books he extended the application of these methods beyond 

four bar mechanisms. 

 

A purely analytical method developed by Abhary
16

 ku."d{"hct."cpf"ceeqtfkpi"vq"vjg"cwvjqtÓu"
experience of teaching mechanisms for more than two decades, the most suitable method for 

teaching analytical approach to force analysis of planar frictionless mechanisms. The method for 

force analysis of planar frictional mechanisms developed herein is, in fact, the elaboration and 

refinement of this method for frictionless mechanisms, which proved to be quite capable of 

accommodating sliding frictions. Unlike the standard analytical method which leads to large 

systems of simultaneous equations, this method leads to only one linear algebraic/vectorial 
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equation at a time. It is systematic and follows a general pattern. It is highly suitable as a 

standard technique for manual solution to the problem and could also be easily programmed as a 

computer oriented force analysis scheme for planar frictional mechanisms. To the best of the 

cwvjqtÓu"mpqyngfig."vjku"ogvjqf"ku"far easier to apply than any other existing method; hence it is 

not only a powerful design tool for analysis and design of planar frictional mechanisms but a 

most suitable method for teaching force analysis of frictional mechanisms. 

 

Vector ial Illustration of Mechanisms 
 

The method explained in this paper uses the well- known vectorial illustration of planar 

mechanisms, in which the geometry of a mechanism is defined by a number of vectors, whose 

unknown lengths and inclination angles are determined at the very first stage of analysis of 

planar mechanisms, i.e. position analysis. 

 

 
 

Figure 1   A Quick-Return Mechanism 

 

Figure 1 is the vectorial illustration of a quick-return mechanism where iG  is the centroid of link 

i and the position vectors are 

 

    2j

222 eAOAOR
s©??

E
 (1) 

    4j

443 eAOAOR
s©??

E
 (2) 

    4j

444 eBOBOR
s©??

E
 (3) 
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 4

4

j

4444g eGOGOR
s©??

E
 (4) 

  5j

5 eBCBCR
s©??

E
 (5) 

   5

5

j

55g eBGBGR
s©??

E
 (6) 

  

In this paper the velocity of a joint, say B, is denoted by bj

bb evv
h?

E
 and its acceleration by 

bj

bb eaa
i?

E
, and the inertia force of link i 

 

 ii j

i

j

iiiii efeamamf
ii ?/?/?

EE
 (7) 

 

It must be mentioned that in a mechanism, usually either the input- or the output-load is 

unknown. For example, in Figure 1 the input torque T on link 2 is the unknown. 

 

Convention to Define a Joint-Force 
 

To facilitate and systematize the procedure, the following convention is observed herein to 

identify and denote joint-forces of a planar mechanism. This convention, with the aid of a portion 

of a hypothetical mechanism illustrated in Figure 2a, is stated as follows: 

 

If links i and j (i <  j) of the mechanism are pivoted together at joint, say, B as illustrated in 

Figure 2a, the force at joint B on the free body diagram of link i, is denoted by B
E

; hence, by 

B
E

/  on link j, Figure 2b.  

 

In Figure 2 

 i

i

j

iig eHGHGR
s©??

E
 (8) 

 j

j

j

jjg eDGDGR
s©??

E
 (9) 

 

Denotion of Fr ictional Forces 

 

The frictional force on a slider always opposes the relative velocity of the slider with respect to 

its mating link, and its magnitude is the product of the coefficient of friction and the normal 

reaction between the slider and its mating link. 

 

Therefore, the frictional force on link 6, Figure 1, as depicted in its free-body-diagram, Figure 

4a, is 

 cj

666 eFF
ho/?|

E
 (10) 

 

and the frictional force on link (slider) 3 is opposite to the velocity of the slider with respect to its 

carrier, link 4 , i.e. opposite to 

 * + 4eRdtAOd 34

s%?  (11) 
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Therefore, defining 

 
Ì
Ë
Ê

>-?
@/?

0Rif1

0Rif1

334

334

%

%

f
f

 (12) 

 

 
 

 
Figure 2   Illustration of joint-forces 
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then the frictional force on link 3, i.e. 34F |/
E

 in Figure 6, is 

 

 434343434 FF sof æ?|/
E

 (13) 

so 

 434343434 FF sof æ/?|
E

 (14) 

 

Analytical Force Analysis of Fr ictional Planar Tree-Like Mechanisms 
 

Force analysis of a mechanism uses the results of the kinematic analysis, i.e. positions, velocities 

and accelerations, as the data. 

 

The method developed herein, for determining the joint-forces, consists of an algorithm as 

follows: 

i. In a mechanism either the input load or the output load is known. In the former case start the 

analysis from the input link, otherwise from the output link. 

 

ii. To determine a joint-hqteg."eqpuvtwev"vjg"htgg"dqf{"fkcitco"qh"vjg"lqkpvÓu"cflcegpv"nkpmu"
using the convention previously stated in this paper, starting with the joint on the input or 

output link as described in Step i. 

 

As a guide, consider the sub-mechanism in Figure 2a of a hypothetical mechanism where the 

general picture of the two adjacent links of a joint, B, is depicted along with their free body 

diagrams, Figure 2b. 

 

iii. Determine the current joint-force from either the force- or a moment-equilibrium equation of 

an adjacent link, if possible, then go back to step ii to determine the next joint-force. 

Qvjgtykug"tgeqpuvtwev"vjg"htgg"dqf{"fkcitco"qh"vjg"lqkpvÓu"cflcegpv"nkpmu"d{"fgeqorqukpi"
the joint-force into the direction of these links. 

 

For example, in the hypothetical sub-mechanism, Figure 2a, the joint force B
E

 in Figure 2b is 

decomposed into iB
E
D iR

E
 and jB

E
D jR

E
, Figure 3. 

 

iv. Determine the non-parallel component of the joint-force on any adjacent link from the 

moment-equilibrium equation of the link about its other end. 

 

 In the hypothetical sub-mechanism, Figure 3, this means that jB
E

 is determined from the 

moment-equilibrium equation of link i about H 

 

i

ii

i

ji

i
qefeReBeRqfRBRM

j

i

j

g

j

j

j

iiigjih -·-·?-·-·?Â isss
EEEE

 

  * + * + 0qsinfRsinBR iiiigiijji ?-/-/? siss  (15) 

 Therefore 

  * +] _ * +ijiiiiigij sinRqsinfRB sssi /-//?  (16) 
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Figure 3   Decomposition of a joint-force 

 

Similarly, iB
E

 is determined from the moment-equilibrium equation of link j about D, Figure 

3 

 
* +

i

jj

j

ij

i
qefeReBeRqfRBRM

j

j

j

g

j

i

j

jjjgijd -·/·?-·//·/?Â isssEEEE
 

  * + * + 0qsinfRsinBR jjjjgjiij j
?-///? siss  (17) 

i.e. 

 * +] _ * +jijjjjjgi sinRqsinfRB
j

sssi ///?  (18) 

 

Therefore the joint-force B
E

is 

 

 jib
j

j

j

iji

j
eBeBBBBeB

ssn -?-??
EEE

 (19) 

 

v. Once a joint-force is thus determined, the other joint-forces on the adjacent links can be 

easily determined from their force-equilibrium, i.e. 0F ?Â
E

.    

   

 Applying this rule to link i, Figure 3 

 

 0BfHF i ?--?Â
EEEE

 (20) 

so 

 BfH i

EEE
//?  (21) 
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and to link j 

 0fDBF j ?--/?Â
EEEE

 (22) 

so 

 jfBD
EEE

/?  (23) 

 

vi. Repeat step ii to v for all moving- as well as fixed-joints. 

 

It can be seen that a joint-force is determined either by its components (along its adjacent links, 

such as joint-force B
E

 determined out of its components 
iB

E
 and jB

E
, Figure 3) via two simple 

algebraic linear equations (such as Equation 15 & 17), or from the vectorial force-equilibrium 

equation of the links (such as joint-force H
E

 via Equation 20 and D
E

 via Equation 22). 

 

The application of the method is fully demonstrated through an example in the next section. 

 

Example 
 

Consider the quick-return mechanism illustrated in Figure 1, where the input link 2 rotates at 

2n rpm and the output link 6 delivers force F
E

opposite to the velocity of point C during the 

forward stroke, while input-torque T is to be determined. The assumption is that the length, mass 

and centroid of all links are known, and kinematic analysis of the mechanism (which is a 

prerequisite for the force analysis) is already fully performed; that is to say positions, velocities, 

accelerations, and consequently inertia forces and inertia torques of all links are already 

determined. 

 

The specifications of the mechanism are as follows: 

200AO2 ? , 700BO4 ? , 600BC ? , 300OO 24 ? , 400GO 44 ? , y-coordinate of joint C = 

900yC ? , 300BG5 ? mm; deg02 ?s , 5.0m3 ? , 6m4 ? , 4m5 ? , 1m6 ? kg; 10J 4 ? , 

6J 5 ? kgm
2
; F =  1kN; 5.0346 ?? oo ; rpm150n2 ? ccw and link 2 is dynamically balanced 

about 2O . The kinematic analysis of the mechanism at fl? 02s  produced the corresponding data as 

per Table 1, also 361R3 ? mm and 0R3 @% . 

 

Table 1 Kinematic data for the mechanism in Figure 1 

v  a  

 deg rad/s rad/s2 m/s  deg m/s
2 deg

2 0 15.708 0.000 A 3.142 90 49.348 180

3 4.833 43.800 B 3.383 146 34.748 174

4 56 4.833 43.800 C 3.986 180 27.092 180

5 148 3.687 -1.796 G4 1.933 146 19.856 174

6 0.000 0.000 G5 3.528 164 30.884 177

L
in

k

P
o

in
t

 
 

The force analysis of the mechanism is performed as follows: 

a. Apply step i to determine where to start the analysis 

Since the output load F
E

 is known, the analysis must begin with the output link, i.e. link 6. 
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b. Apply step ii to illustrate the components of joint-force C
E

. 

Construct the free body diagram of the adjacent links of joint C, link 5 and 6, Figure 4. 

  

c. Apply step iii 

Joint-force C
E

 cannot be determined from only one equilibrium equation of its adjacent 

links, hence it is decomposed into 
5C

E
 and 

6C
E

 parallel to these adjacent links, respectively. 

(Note: according to the convention proposed herein, the joint-force C
E

 is applied to link 5 

and its reaction to link 6, because 5<6). 

 

 
 

Figure 4   Free body diagram of link 5 and 6 

 

d. Apply step iv to determine  joint-force C
E

 via its components 

6C
E

 is obtained from the moment-equilibrium equation of link 5, Figure 4b, about joint B 

 

55g65b qfRCRM
5

-·-·?Â
EEEE

5

55

5

5 qefeReCeR
j

5

j

g

0j

6

j

5 -·-·? iss  

    * + 0qsinfRsinCR 5555g565 5
?-/-/? sis  (24)  

from which 

 * +] _ N23sinRqsinfRC 555555g6 5
/?-/? ssi  (25) 

   N023eCC 0j

66

flæ/??
E

 (26) 

 

And the force-equilibrium equation of link 6, Figure 4a, is 

 

 0CFFfFCF 66665 ?/|----/?Â
EEEEEEE

 (27) 

or 

 66665 CfFFFC
EEEEEE

/-?|//  (28) 

or  
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0j

6

j

6

jj

66

90j

6

j

5 eCefFeeFeFeC ccc5 /-/?-/ ihhs o  (29) 

 

The expansion of Equation 29 into a system of two linear equations 

 

 6c6cc6655 CcosfcosFcosFcosC /-/?- ihhos  (30) 

     0FsinC 655 ?/s  (31) 

 

facilitates the determination of C
E

 and 
6F

E
 as follows 

 

    N943
cossincos

CcosfcosF
C

c565

6c6c

5 /?
-

/-/
?

hsos
ih

 (32) 

  

       N500sinCF 556 /?? s  (33) 

hence 

 N33924023148943eCeCCCC 0j

6

j

565
5 flflfl /æ?æ/æ/?-?-? s

EEE
 (34) 

    
fl/æ? 90500F6

E
 (35) 

 

e. Apply Step v to determine joint-force B
E

 

 From the force-equilibrium equation of link 5, Figure 4b 

 

 0BfCF 5 ?/-?Â
EEEE

 (36) 

B
E

is determined 

 N30033,1BefCB bj

5

fl/æ??-? n
EEE

 (37) 

 

where bn  is the inclination or angular position of B
E

. 

 

Now apply step vi, i.e. repeat step ii to v, to other joints as follows: 

 

f. Determine joint-force 34F
E

 

 34F
E

 is the normal force applied by link 3 on link 4. Apply step ii, i.e. construct the free body 

diagram of links 4 and 3, Figure 5 and Figure 6 respectively. From Figure 5 

 

 
* + * +

N499,1
R

qsinBRsinfR
F

3

44b44444g

34 /?
-/-/

/?
snsi

 (38) 

  

  
* +

N34499,1eFF
90j

3434
4 fl- /æ?? s

E
 (39) 
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Figure 5   Free body diagram of link 4 

 

 The constraint force 4F
E

 is then determined from the force-equilibrium equation of links 4 

(step v), Figure 5  

  0BfFFFF 434344 ?--|--?Â
EEEEEE

 (40) 

 

where 34F |
E

 is as per Equation 14; so 

 

  N125809,1BfFFF 434344

flæ?//|//?
EEEEE

 (41) 

 

 
 

Figure 6   Free body diagram of link 3 

 

g. Determine joint-force A
E

 

 Apply step iii to the free body diagram of link 3, Figure 6 

 

 0FFfAF 34343 ?|//-/?Â
EEEEE

 (42) 

hence 
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 N119608,1FFfA 34343

flæ?|//?
EEEE

 (43) 

 

h. Determine constraint-force 2F
E

 

 Apply step iii to the free body diagram of link 2, Figure 7 

 

 0AFF 2 ?-?Â
EEE

 (44) 

hence 

  N61608,1AF2

fl/æ?/?
EE

 (45) 

 

 

 
 

Figure 7   Free body diagram of link 2 

 

Compar ison with the Conventional Analytical Method 
 

The quick-return mechanism analyzed in the previous section contains thirteen unknowns 2F
E

, 

4F
E

, 6F
E

, A
E

, B
E

, C
E

, 34F
E

 and T whose determination via the conventional analytical method 

would lead to a system of thirteen simultaneous equilibrium-equations: three equations for each 

of links 2, 4 and 5, and two equations for each of links 3 and 6. Needless to say that, on the one 

hand the parametric (general) solution of thirteen simultaneous equations can be achieved only 

manually, hence it is very tedious and time consuming, and on the other hand its numerical 

solution implies computation, therefore makes it unsuitable specially for teaching and class room 

tutorial purposes. In contrast, the method developed herein generates the general (parametric) 

solution for each load via only one linear algebraic or one vectorial equation at a time as 

demonstrated in the previous section; and pocket calculators suffice the manual solution. 

 

Conclusion 
 

The purely analytical method developed herein for the force analysis of one degree-of-freedom 

frictional planar tree-like mechanisms is general and, as demonstrated, can be systematically 

applied to generate the parametric solution. Hence it can be efficiently employed as a standard 

technique for manual or automatic solution to the problem. 

 

After a little acquaintance with the method, the user would realize that the moment- and force-

equilibrium equation (such as, say Equation 24 & 36 for link 5) could easily be set up without 

even resorting to the free body diagram of links. In other words, the convention proposed for 

depiction of joint-forces helps the user easily generate the conceptual image of the free body 

P
age 13.101.14



   

diagrams in the mind. In addition to that, each link is solved independently for which, only one 

simple linear algebraic or vectorial equation is to be solved at a time. 

 

The superiority of the method over the conventional analytical one was demonstrated in the 

previous section. Compared with graphical methods, not only is the method much more precise 

(due to its analytical nature) but it is certainly less time consuming too. This is due to the fact 

that, setting up and solving the equilibrium equations (as functions of kinematic parameters 

already determined in the kinematic analysis of the mechanism) is much easier to manage than 

drawing numerous precise scaled figures. 
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