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A simple physical model to assist in fluid mechanics calculations 

This “5-minute presentation” introduces session participants to a simple physical model that the 

author uses to help students learn how to calculate the hydrostatic force on a planar surface. A 

frequent source of confusion among students when learning this concept is the definition of 

“area.” Students often mix up the area of the planar surface with the area of the side of the 

pressure distribution. This model helps differentiate between the two. It also provides an easy 

means of showing students that the pressure distribution is not prismatic when the it acts on a 

planar surface of variable width. Since introducing this model several years ago, student 

performance on homework and exam problems related to this concept have generally increased 

by approximately ten percent. 
 

 

Introduction 

 

Physical models are widely viewed as a useful means of improving student learning. In civil 

engineering education, most physical models are full-size or scaled versions of a physical object. 

They are used to either help understand complicated three-dimensional geometry or demonstrate 

the response of the object to applied forces. The author has a built a simple model which does 

not represent a physical object; rather the model demonstrates the hydrostatic pressure 

distribution exerted by a liquid on a flat surface. The motivation for the model was the desire to 

help students avoid common errors when calculating the resultant force produced by the 

hydrostatic pressure distribution on a submerged flat surface. 

 

 

Underlying fluid mechanics concept 

 

Hydrostatic pressure in a liquid increases linearly with distance below the liquid surface. This is 

often represented by a triangular pressure distribution drawn on a vertical section through the flat 

plane on which the pressure is acting. The plane can be either vertical or inclined, so the section 

represents the plane by either a vertical or inclined line as shown in Figure 1. 

 

 
 

Figure 1: Pressure distributions on vertical and inclined planes 

 

Most students in a fluid mechanics class have already taken a statics class, so they readily see 

that the triangular pressure distribution is a form of a distributed load. They often remember that 

they needed to integrate the distributed load to determine the resultant in statics class, so they 



assume that the area of the triangle is important for hydrostatic force problems. This is not 

always the case since pressure has dimensions of [F/L2] whereas distributed loads are often 

presented in dimensions of [F/L].  

 

If the planar area on which the pressure distribution is acting begins at the liquid surface and has 

a constant width (either a rectangle or other parallelogram oriented so two of the parallel sides 

are horizontal), the resultant force is simply equal to the area of the triangular pressure 

distribution multiplied by the constant width. If the planar area has constant width but its 

horizontal top edge is located below the liquid surface, the resultant force is the area of the part 

of the triangular pressure distribution which acts on the planar surface, which is trapezoidal as 

shown in Figure 2, multiplied by the constant width. The latter case is referred to as pressure 

acting on a submerged plane. In both cases, determining the resultant is equivalent to calculating 

the volume of a pressure prism.  

 

Although not presented this way in textbooks, the resultant can be calculated using equation (1): 

 

 𝑅 = 𝐴𝑇 · 𝑏 (1) 

 

where R is the resultant force [F], AT is the area of the triangle or trapezoid [F/L], and b is the 

uniform width of the planar area on which the pressure distribution is acting [L]. The dimensions 

of AT are [F/L] because the sides of the triangle or trapezoid have dimensions of pressure and 

length. 

 
Figure 2. Pressure distribution acting on a submerged planar surface. 

 

 

If the submerged planar area does not have a constant width, the triangular or trapezoidal area is 

not useful for calculating the resultant. In this case, equation (2) must be used: 

 

 𝑅 = 𝛾ℎ𝐶𝐴 (2) 

 

where γ is the specific weight of the fluid [F/L3], hc is the vertical distance from the liquid 

surface to the centroid of the planar area on which the pressure distribution is acting [L], and A is 



the area of the planar surface on which the pressure distribution is acting [L2]. This equation is 

equivalent to the statement that the resultant is the product of the pressure exerted at the centroid 

of the surface area of interest (𝑝𝑐 = 𝛾ℎ𝑐) and the area of interest, A. 

 

Equation (2) is a general equation which holds for all cases – constant width or variable width, 

submerged or not submerged, vertical or inclined plane.  

 

The author’s experience is that students are often confused when calculating resultants because 

the illustrations in textbooks show the side of the pressure distribution, which is triangular, so 

they always try to use AT in their calculations, even when  using equation (2) where the variable 

A is not the same as variable AT. 

 

 

The physical model 

 

The physical model was built in an effort to help students differentiate between A and AT. It was 

built when the author was a participant in the ASCE ExCEEd (Excellence in Civil Engineering 

Education) workshop during July 2014 and has been used all six semesters that the author has 

taught fluid mechanics since then. Figure 3 shows the model as constructed at the workshop, and 

Figure 4 shows the pieces that were brought back to campus afterwards (without the wooden 

structural support). Although the model was more stable with the structural support, the current 

format is much lighter, and smaller, and can be easily carried to class across campus. It also 

benefits from a few handwritten annotations that were added after several semesters of use.  

 

Figure 3. Physical model as constructed at ASCE ExCEEd workshop 

 

The essential parts of the model were made from very simple materials: an 8” by 20” piece of 

white foam board, a triangular sheet of blue paper (from the cover of an exam blue book), two 

small pieces of foam, and tape. The triangular sheet of blue paper with arrows representing the 

hydrostatic pressure distribution below the liquid surface is taped to the foam board along one 

edge. The foam board has two shapes cut out of it below the line representing the liquid surface – 

a horizontal rectangle and a circle. These shapes are the planar areas on which the hydrostatic 

force is applied, and are labeled as “A.” The cut out planar areas have pieces of foam in the form 



of the pressure distribution attached to them. Arrows are drawn on the sides of the foam to 

represent the pressure distribution. The trapezoid on the side of the purple piece of foam 

representing the pressure distribution acting on the rectangular plane has recently had an “AT” 

label added to it. Both cut out shapes are placed in the model before the demonstration begins, 

and “hidden’ from view behind the blue triangle. 

Figure 4. Pieces of physical model used in class 

 

At the beginning of the demonstration, students are shown the white face of the model with both 

planar areas (A) and the blue triangle. The blue triangle is then pivoted out of the way to reveal 

the foam models of the pressure distribution that are behind the rectangular and circular cut-outs. 

Discussion of the differences between “A” and “AT” ensues. Although the arrows on the sides of 

both foam blocks initially appear to represent trapezoids, especially at a distance, once the 

cutouts with attached foam are removed for inspection, students more clearly see that only the 

purple block has a planar side that can be labeled “AT.” The absence of a similar “AT” on the 

curved side of the yellow foam attached to the circular plane demonstrates that “AT” is only 

defined if the plane on which the pressure is acting has constant width. This reinforces the lesson 

that equation (1) is not always appropriate to use. As explained below, in recent semesters this 

has also led to discussion about the correct definition of a prism, to support the discussion of 

when it is appropriate to calculate the volume of a pressure prism. 

 

With limitations, the model can also be used to explain how pressure is calculated if the plane is 

inclined. The author demonstrates how A remains unchanged if the plane is inclined; however, 

since the size of the blue triangular pressure distribution is fixed, the demonstration can lead to 

misunderstanding. The author therefore currently resorts to the board to explain this concept and 

hopes to build another model which can be used for this purpose.   

 

 

Assessment of benefits of the physical model 

 

Students have generally provided immediate positive feedback about the physical model during 

and after the class when it is used. There is often a sense of surprise when I reveal it and begin 



the demonstration. In addition to providing a means of clarifying the calculations at hand, the use 

of the model also tends to engage the students more.  

 

A formal assessment of the impact of the model on student grades was not done. This would 

have required more granular breakdown of student performance on subsections of assigned 

problems, since computation of the resultant force is usually just a component of the grade for a 

problem. This problem subsection breakdown was not recorded before the model was 

introduced, so even recording problem subsection grades after the model was introduced would 

not have sufficed. 

 

Furthermore, electronic records of student grades on a problem-by-problem basis for several 

semesters before the model was built were lost, so there is little data to compare before and after 

grades for specific problems that are similar to each other. Overall grades on entire problem sets 

were compared instead. The problem sets typically included additional types of hydrostatics 

problems, not just problems involving resultants on flat plates. Student averages on hydrostatics 

problem sets during three semesters before the model was introduced ranged from 60 to 63%; 

after the model was introduced, student averages on similar problem sets ranged from 59% to 

71% over five semesters, with an average of 67%. The grade of 59% is an outlier; eliminating it 

yields a range of 67% to 71% on four problem sets, with an average of 69%. This analysis is 

evidence that student performance on hydrostatics problems sets generally improved after the 

model was introduced. However, it should not be used as strong evidence that the physical model 

was the reason. (Perhaps it is evidence that the ExCEEd workshop improved overall teaching.) 

 

A simple survey was emailed to 55 former students from three recent semesters to assess the 

usefulness of the model. The questions focused on whether the model improved understanding of 

the calculations. Responses are shown in Figure 5. 

 

 
Figure 5: Student responses to survey about physical model effectiveness 
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Of the 19 students who responded, three admitted that they didn’t quite understand the model 

when it was presented. Nevertheless, there was unanimous agreement that the model helped 

students understand the differences between the two areas denoted as A and AT in this paper and 

that the model also helped them solve problems. Only 14 students responded that they 

understood the pressure prism concept. I believe part of the problem is that students are unclear 

about the exact definition of a prism; some appear to believe that any three-dimensional solid is a 

prism so they do not understand why the volume behind the circle is not considered a prism. 

During recent semesters I have made an effort to clearly define a prism; however, the sample 

size is too small to determine if students in recent semesters have a better understanding. 

 

Students were also asked to provide open-ended feedback. The six students who opted to do so 

were unanimous in stating the model’s benefits. Three sample responses are presented below: 

 

“I am definitely more of a visual / hands on learner and I know a topic like this is not the 

easiest thing to get across, … so I think that by having this physical 3 dimensional visual 

it definitely helped further my understanding.” 

 

“At the time of the demonstration, it was unclear. After applying the knowledge to 

practice questions, it was very helpful seeing it. Especially, for it being tangible.” 

 

“Sometimes you can’t draw concepts on a board - Prof Ronan’s 3D model was a great 

visual in learning pressure distributions in 3D.” 

 

 

Conclusions 

 

A simple model representing the hydrostatic pressure distribution acting on a planar surface is 

used to assist teaching students how to calculate the resultant force. The model has received 

positive feedback from students; it helps students understand the terms used in relevant equations 

which improves their ability to solve problems. The use of the model during class also engages 

students more during the lesson. 

 


