
AC 2007-1705: A SINGLE PLATFORM TO TEACH CIRCUIT DESIGN,
BIOINSTRUMENTATION, CONTROL & SIGNAL PROCESSING IN
BIOMEDICAL ENGINEERING

Shekhar Sharad, National Instruments

© American Society for Engineering Education, 2007

P
age 12.112.1

A Single Platform to Teach Circuit Design, Bioinstrumentation, Control &

Signal Processing in Biomedical Engineering

Traditional Biomedical Engineering programs use multiple software platforms to teach

biomedical engineering concepts in circuit design, bioinstrumentation, control and signal

processing. As a result, the students spend a lot of time learning the different tools instead of

learning the concepts. With the evolution of graphical programming tools, it is now possible to

provide a single graphical platform that spans all facets of engineering such as circuit design,

data acquisition, instrument control, control systems, digital signal processing and senior design.

This results in the students spending much less time learning different tools and more time

learning and implementing the concepts in a hands-on environment. In this paper, we will outline

and explain the different components and advantages of such an Integrated Biomedical

Engineering Platform. We will also show example implementation of such an integrated

graphical platform in areas such as Bioinstrumentation and Circuit Design

1. Introduction

In the rapidly changing field of Biomedical Engineering (BME), there is a continual challenge to

teach concepts from an ever-increasing set of courses that span curricula from multiple

disciplines. For example, a typical BME program[1,2,3] today overlaps with the courses from

electrical engineering, mechanical engineering and the sciences. However, the time period to

cover all the concepts is still the same as before which presents the challenge to find ways to be

efficient with the time spent learning tools versus learning concepts. With graphical

programming tools evolving rapidly in the past few years, it is now possible to have a single

platform that can span multiple courses and senior design projects. In this paper, we will

illustrate the use of graphical programming platforms to teach concepts across multiple courses,

with an example from bioinstrumentation and circuit design.

2. Tool-fatigue

One of the most significant challenges that educators face today in teaching different courses

from different domains is the use of multiple tools. For example, students may use one tool for

design and simulation of their algorithm, while they may need to rewrite their application to suit

another tool for deployment in a design project. For example, most universities ask students to

use one tool for data acquisition(LabVIEW) and another for the signal processing(Matlab
®

) and

yet another tool to deploy to hardware(Xilinx tools). The challenge with this approach is that

students end up spending the majority of their time learning new tools and less time on actually

learning the concepts. This leads to what can be referred to as “Tool-fatigue”, where the student

knows many tools but not enough domain knowledge to know how to solve the problems with

the right approach. Tool-fatigue affects biomedical engineering more than other disciplines

because of the overlap between other disciplines – A BME student needs to learn not only tools

from the Electrical engineering domain, but also from mechanical engineering and from the

sciences.

In addition, BME students generally do not have extensive experience with textual programming

languages such as C and C++. Hence, the degree of learning is higher when it comes to learning

text-based languages that require extensive programming expertise. This is where innovative P
age 12.112.2

approaches such as graphical programming have significant advantages in helping teach

concepts to BME students.

3. Graphical Programming: An Integrated Approach

One of the natural mechanisms that engineering students use to learn concepts is block diagrams.

In the programming world, the paradigm that they use is generally referred to as dataflow

paradigm[4,5]. Under the dataflow paradigm, the solution to a problem is modeled as a series of

operations (represented as blocks) with the data seemingly invisible. While this may seem a

minor detail, it helps provide a much higher level of abstraction when designing algorithms and

systems.

Figure 1 shows the difference between a C-code snippet to add two numbers and multiple the

result by 25 and the dataflow representation of the same.

 (a) Textual Representation (b)Equivalent Dataflow Representation

Figure 1. Comparison Between Textual and Dataflow Paradigms

Several key points are worth noting in the two representations. First, textual representation needs

a lot of attention to syntax and variables. In the example in figure 1, the variable c needs to be

properly declared and identified (int c=0). Secondly, the textual approach uses a procedural

approach with one function following the other with no apparent “flow” of data making it

difficult to comprehend the objective of a program, whereas the dataflow representation gives

everyone a clear overview of what is happening. When professors teach concepts to students,

they use a block diagram approach as shown in figure 1(b). Graphical programming helps take

advantage of this natural mechanism to not only teach concepts but also to simulate and

prototype applications in BME.

Graphical programming, based on the dataflow paradigm, provides a simple yet powerful and

interactive environment that educators and students can use to teach and learn concepts.

Graphical programming languages have also evolved to be able to interface with multiple

hardware platforms and instruments such as FPGAs, DSPs, data acquisition systems, traditional

benchtop instruments and medical instrumentation. This flexibility in connecting to hardware

and the availability of user-defined and pre-built functions for different areas from circuit design

to signal processing makes graphical programming a key methodology to enable students to

focus more on concepts and less on learning tools. Figure 2 shows some of the leading graphical

programming languages.

int func_add_multiply(a,b)

{

//program to add and multiple

int c=0;

c=a+b;

c=c*25;

return c;

}

P
age 12.112.3

Figure 2. Examples of Graphical Programming Languages (a) Ptolemy[6] (b) NI LabVIEW[7]

Figure 3(a) shows the comparison between a typical BME curriculum[1,2,3] that would include

traditional tools for some courses and how graphical programming provides a single, integrated

software platform

Figure 3(a) Courses from a Typical BME Curriculum with Unique Software & Hardware Needs

Figure 3(b) brings out some important benefits that graphical programming offers educators in

BME. Graphical programming uses a uniform syntax for all areas which means that a student

does not have to learn a new programming language. In addition, graphical programming

languages such as NI LabVIEW connect to a wide range of hardware from medical instruments

to FPGA-based platforms and cameras for image processing. Let us now look at some of these

implementations in detail

Optional

P
age 12.112.4

Figure 3(b) The Courses in Figure 2(a) with Graphical Programming

4. Graphical Programming for Bioinstrumentation and Circuit Design

The Bioinstrumentation curriculum partly deals with acquiring and analyzing data from various

sensors and instruments and forms one of the core courses that every BME student needs to go

through. Bioinstrumentation poses an interesting challenge to educators with the vast number of

sensors and instruments that one can connect to. Figure 4a illustrates the traditional approach

where data from multiple sensors needs to be acquired and analyzed.

Figure 4a. Traditional Approach to Acquire Data From Multiple Sensors

In the traditional approach, there would be multiple paths to acquiring data from each sensor,

such as using sensor specific software and acquiring over USB or using GPIB or Serial buses to

communicate with traditional instruments to import data into a computer program. Afterwards,

data from multiple sources needs to be compiled to be compared.

Seamless

P
age 12.112.5

Figure 4b shows the same course that uses a graphical programming platform.

Figure 4b. Effect of Graphical Programming Environment on Bioinstrumentation

Graphical programming environments include capabilities to interface with multiple buses

included USB, Serial and GPIB. Furthermore, it is possible to define a custom communication

pattern for a specific sensor via serial or GPIB. In addition, graphical programming

environments include some kind of plug-ins to connect to the web via TCP/IP. This enables

students to be able to acquire data from a variety of sources, consolidate and compare them

automatically under a single platform. Figure 5 shows an example of a graphical program in NI

LabVIEW that acquires data from two sensors, one connected to a data acquisition device and

another to a traditional instrument that communicates via GPIB.

Figure 5. Acquiring Data from Two Sensors Via GPIB and PCI Buses

Another engineering area that is closely related to bioinstrumentation is circuit design.

Traditional tools for circuit design do not offer a seamless environment to compare simulation

data with real-world signals. Students would have to simulate the system in a SPICE simulation

environment such as NI Multisim, save the data and then retrieve it in an analysis package. With

graphical programming, educators now have access to a seamless platform from design, to

prototyping and comparison of results between the simulation domain and the real world. Figure

P
age 12.112.6

6 shows the seamless integration from design to prototyping for circuit design. The SPICE

simulation tool used here is NI Multisim, but any other simulation package can be used as well..

Figure 6. Seamless Integration Between Theory, Design and Prototyping

To illustrate, one of the basic concepts that every student learns is analysis of RLC circuits. The

power of the seamless integration with graphical programming is demonstrated when this

example is applied to it – the students first learn the concepts from leading textbooks. Then they

use SPICE simulation and capture software such as NI Multisim to design and simulate the RLC

circuit and understand the step response. In order to verify the simulation results, they then

prototype the RLC circuit on a prototyping platform such as NI ELVIS and compare the

simulation results with real-world data using a graphical programming environment such as NI

LabVIEW. Hence, the students can now bring theory to life and understand the circuit design

concepts better.

4.1 Graphical Programming for Signal and Image Processing

Signal and Image Processing is integral to biomedical engineering and is used in various

courses[1,2,3]. Creating and manipulating complex signal and image processing algorithms

textually is cumbersome and can lead to errors. Graphical programming provides a more

intuitive approach to creating signal and image processing algorithms. To illustrate, let us

consider the example of creating a filter. The parameters of the filter are shown in Table 1.

Table 1. Parameters for a Digital Filter

Criteria Value

Filter Type Lowpass

Cutoff Frequency 200 Hz

Filter Topology Elliptic

Traditional techniques would involve generating the coefficients first in one program, use

another program to redesign this filter if a fixed point target is being used, and finally using an

add-on or separate program to download this filter to the hardware that is used. Additionally, the

student does not get to explore the nuances of designing filters. Questions like, what would

DeployPrototypeDesign / Simulate Theory
Curriculum

Integration

Real World

I/O

Integration

Industry

Relevant

Integration

DeployPrototypeDesign / Simulate Theory
Curriculum

Integration

Real World

I/O

Integration

Industry

Relevant

Integration

P
age 12.112.7

happen to the frequency response if some other topology was used? What is the order of the filter

if we used an IIR configuration? How does my stop band and pass band characteristics change

depending on the topology? Graphical programming, on the other hand, can help educators teach

these concepts more effectively. Figure 7 shows an example of a filter design function that uses a

configuration screen to design the filter.

Figure 7. Designing an Elliptic Low-pass Filter

Some key points about the configuration screen shown in figure 7 include dynamic update of the

frequency responses and pole-zero plots. This implies that whenever the topology or any other

parameter is changed on the left hand side, the right hand side will update automatically. In

addition, educators can also demonstrate the changes in parameters by changing the frequency

response on the right hand side. Once the filter is designed, the student may choose to save the

coefficients to a file or convert for fixed point and generate code to implement this filter on an

FPGA or DSP.

The key factor here is that since this is graphical programming, there is no additional learning

curve for the student. Most packages also include a lot of signal processing functions that cover a

wide array of signal processing functions.

A similar parallel can be drawn for image processing. Graphical programming environments

allow for step-by-step creation of image acquisition and analysis programs. Educators and

students can now acquire from many kinds of cameras from a USB webcams to high-end

firewire cameras and use tools like the NI Vision Builder. Figure 8 shows an example program

P
age 12.112.8

from Vision builder. It is worth noting that the system uses a set of functions that are added and

configured in a step-by-step fashion – this allows the student to focus more on the concept of

defect detection or object recognition than the task of writing the actual algorithm.

Figure 8. Example Program to Detect Chocolates in Vision Builder

4.2 Other Areas for Graphical Programming

Graphical Programming is continually evolving and now has languages capable of being used to

teach control courses with complete simulation, system identification and control design

capabilities[8]. Embedded design has also seen a resurgence in ease-of-use and focus on

concepts with innovations such as the LEGO Mindstorms NXT kit[9] which is completely

programmed with graphical tools. Graphical tools are already being used for Medical Device

Design[10].While some of these courses may not be applicable today to biomedical engineering,

they may well be relevant in the future with nanotechnology and BioMEMS.

5. Assisting ABET Accreditation

Because Graphical Programming involves using state-of-the-art technology and promotes hands-

on project based learning with actual hardware, it is helpful in gaining ABET Accreditation[11].

With graphical programming, educators now have the opportunity to demonstrate hands-on

learning of biomedical engineering concepts and designing real-world projects that students can

solve in a team-based environment thus helping satisfy some of the essential ABET (a)-(k)

outcomes[12].

P
age 12.112.9

6. Feedback on Using a Single Platform

Several educators from other disciplines such as Electrical engineering have reported on the

effectiveness of both the graphical programming approach and using a tool that provides hybrid

capabilities. Educators at Rose-Hulman Institute of Technology[14] have now started using

graphical programming for teaching the signal processing classes and the results reported in

literature are shown to be promising. Similarly, Educators at University of Texas at Dallas[13]

have done studies on using a hybrid approach under a single platform and the results in literature

are interesting and encouraging. While there are reports from other departments, the authors

could not find any publication in the Biomedical engineering area. Being a novel concept, It is

the hope of the authors that educators will leverage this approach and enlighten the academic

community with the results

7. Graphical Programming – Tying it all together

It is important to note that what is being proposed in this paper is not to discard all the tools that

are currently being used. In fact, Graphical Programming does not need educators to abandon

and eliminate the current lab setups or tools. In fact, it augments the current system. They can

continue using the existing software and hardware with the modified setup because Graphical

programming provides interfaces for connecting to multiple buses, devices and software. For

example, in LabVIEW, you can connect to various tools such as Code Composer Studio, Excel,

Mathcad, Mathematica, Maple, Xilinx tools etc. What graphical programming brings to the table

for educators is the possibility to use one platform and apply it to labs that include control and

design concepts providing educators an avenue to have software that is economical and can be

shared across multiple classes.

8. Conclusion

Biomedical engineering is a vast, continually evolving universe. Courses in biomedical

engineering span multiple disciplines. This can lead to students learning too many different tools

and not focusing enough on the concepts. In this paper, we discuss graphical programming, a

novel approach to teaching concepts. Graphical programming languages such as NI LabVIEW

and Ptolemy have evolved to span multiple courses and disciplines from bioinstrumentation to

circuits, signal processing and embedded. Graphical programming offers an approach to teaching

concepts where the programming tools serves as a means to the end, rather than the end

themselves thus helping students focus more on the concepts. In addition, since graphical

programming fosters project-based learning in a hands-on, team-oriented fashion, it helps with

ABET accreditation.

7. References

[1] Johns Hopkins University BME Curriculum,

http://www.bme.jhu.edu/subsites/innovations/jhuinnovations.htm

[2] Duke University BME Curriculum

http://www.bme.duke.edu/downloads/undergrad_handbook.pdf

[3] University of Texas BME Curriculum

http://www.engr.utexas.edu/bme/ugrad/General%20Curriculum.pdf

P
age 12.112.10

[4] WM Johnston, JRP Hanna, RJ Millar, “Advances in dataflow programming languages “,

ACM Computing Surveys (CSUR), 2004

[5] WH Ho, EA Lee, DG Messerschmitt, “High Level Dataflow Programming for Digital Signal

Processing”, VLSI Signal Processing III

[6] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems," Int. Journal of Computer Simulation,

special issue on "Simulation Software Development," vol. 4, pp. 155-182, April, 1994

[7] New Features in LabVIEW of Interest to Academia,

http://zone.ni.com/devzone/cda/tut/p/id/3683

[8] Control Design Tools

[9] J.F. Kelly, LEGO Mindstorms NXT: The Mayan Adventure, ISBN: 1-59059-763-X

[10] Improving Retinal Disease Treatment with LabVIEW FPGA and Intelligent DAQ, M.

Wiltberger, Optimedica Corp., http://sine.ni.com/csol/cds/item/vw/p/id/698/nid/124400

[11] ABET Website, http://abet.org/

[12] ABET (a)-(k) Program Outcomes 2007-08, http://abet.org/Linked%20Documents-

UPDATE/Criteria%20and%20PP/R001%2007-08%20ASAC%20Criteria%2011-10-06.pdf

[13] N. Kehtarnavaz and V. Peddigari, Using hybrid programming in DSP lab courses,

to appear in TI Developer Conference Proceedings, Dallas, March 2007

[14] “A Study of Graphical Vs Textual Programming for Teaching DSPs”, M Yoder, B Black -

2006 ASEE Annual Conference & Exposition

P
age 12.112.11

