
Paper ID #9429

A ”Software and Systems” Integration Framework for Teaching Require-
ments Engineering

Radu F. Babiceanu, Embry-Riddle Aeronautical University

Dr. Radu Babiceanu is an Associate Professor with the Department of Electrical, Computer, Software,
and Systems Engineering at Embry-Riddle Aeronautical University in Daytona Beach, Florida. He holds
a Ph.D. degree in Industrial and Systems Engineering from Virginia Tech, a M.S. in Mechanical Engineer-
ing from the University of Toledo, and a B.S. degree in Manufacturing Engineering from the Polytechnic
University of Bucharest. His research provides a systems engineering approach to modeling and opera-
tion of large-scale complex systems, including requirements, architecture, integration, and evaluation of
systems considering their lifecycle effectiveness and sustainability characteristics.

c©American Society for Engineering Education, 2014

P
age 24.127.1

A “Software and Systems” Integration Framework for

Teaching Requirements Engineering

Abstract

Most of the engineered systems used in our daily lives include some sort of a computing unit that

runs software. The integration of systems engineering and software engineering disciplines to

enhance the engineering design process grew significantly in the last decades to become the

norm in the engineering world. Consequently, a coordinated approach is needed to educate the

new generation of systems engineers able to design and build the integrated engineering and

software systems. At Embry-Riddle Aeronautical University, there is an effort underway to do

just that: integrate the software engineering and systems engineering education for graduate

engineering students. The effort started in the Fall 2013 semester with a combined offering of the

“Software Requirements Engineering” and “System Requirements Analysis and Modeling”

courses. Serving as instructor for the “combined software and systems requirements” course

comes with inherent challenges due to students’ different backgrounds, but also provides

opportunities for the instructor to address the need for coordinated software and systems

engineering education. This work reports the pedagogical methodologies used and the findings

uncovered during the entire offering of the “combined software and systems requirements”

course.

1. Introduction

It is long ago now when engineered systems were made only from physical components and

merely the traditional engineering disciplines were involved in the creation of systems.

Nowadays for example, every manufactured vehicle used for our daily commute includes some

sort of a computing unit that runs software. Software engineering is not anymore needed only

for, let’s say, computers and space rockets, it is now part of most of the engineered systems we

use in our daily lives. We are also moving towards building smart homes and unmanned

autonomous vehicles, which include software execution at their core. Consequently, the

integration of systems engineering and software engineering disciplines to enhance the

engineering design process became the norm in the engineering world. The recently issued Guide

to the Systems Engineering Body of Knowledge (SEBoK)
[1]

 explicitly recognizes and embraces

the intertwining between systems engineering and software engineering:

“Software is prominent in most modern systems architectures and is often the primary

means for integrating complex system components. Software engineering and systems

engineering are not merely related disciplines; they are intimately intertwined.”

Therefore, a coordinated approach is needed to educate and graduate the new generation of

systems engineers able to design and build the integrated engineering and software systems.

One key solution to train proficient systems engineers is to provide them with knowledge of both

P
age 24.127.2

systems engineering and software engineering starting with their higher education years. The

College of Engineering faculty at Embry-Riddle Aeronautical University acknowledged that and

started a coordinated effort to address the needed software and systems integration. The

“software and systems education integration project” started in the Fall 2013 semester with the

offering of the graduate “Software Requirements Engineering” and “System Requirements

Analysis and Modeling” courses in one combined section. The first course is required for the

master’s program in Software Engineering, while the second one is an elective course for the

students enrolled in any other graduate engineering programs. The encouraging course

discussions and student feedback received during Fall 2013 halfway into the semester

strengthened the faculty belief in the software and systems integration effort and prompted the

implementation of the other proposed combined sections. Therefore, the Spring 2014 semester

was scheduled to feature two new combined sections part of the “software and systems education

integration project” as follows:

• A combined section of the “Software Project Management” and the “Engineering

Project Management” courses; and,

• A combined section of the “Software Quality Engineering and Assurance” and the

“System Quality Assurance” courses.

The experience and findings to be revealed during these two offerings is envisioned to be

disseminated at the 2015 ASEE Annual Conference. Recognizing also the inherent differences

between the software and systems engineering disciplines, the faculty recommended that other

pairs of candidate courses existing in the curriculum (“Software Systems Architecture and

Design” - “System Architecture Design and Modeling” and “Software Safety” - “System Safety

and Certification”) be kept as individual offerings. With the expected development of a model-

based systems engineering course in the near future, another candidate course to round-up the

“software and systems engineering education integration project” will be the combined course:

“Model-Based Verification of Software” (already listed in the catalog) and “Model-Based

Systems Engineering” (the proposed name for the systems engineering counter-part course). The

current and tentative offerings and their association with the graduate engineering curriculum are

summarized in Table 1 below.

Table 1: Summary of the software and systems engineering education integration project
Integration

status

Systems Engineering

Courses

Curriculum

requirement

Software Engineering

Courses

Curriculum

requirement

First

offering

Combined

sections

System Requirements

Analysis and Modeling

R
1
 - MS SysE

3

E
2
 - MS ECE

4

Software Requirements

Engineering

R - M SE
5

Fall 2013

Engineering Project

Management

E - MS SysE

R - MS ECE

Software Project

Management

R - M SE Spring

2014

System Quality

Assurance

R - MS SysE

E - MS ECE

Software Quality

Engineering and Assurance

E - M SE Spring

2014

Model-Based Systems

Engineering
6

E - MS SysE

E - MS ECE

Model-Based Verification

of Software

E - M SE TBD

Separate

sections

System Architecture

Design and Modeling

R - MS SysE

E - MS ECE

Software Systems

Architecture and Design

R - M SE N/A

System Safety and

Certification

E - MS SysE

E - MS ECE

Software Safety E - M SE N/A

1
Required;

2
Elective;

3
Proposed Master of Science in Systems Engineering;

4
Master of Science in Electrical and

Computer Engineering;
5
Master of Software Engineering;

6
Proposed course.

P
age 24.127.3

This current work reports the experience and findings uncovered during the entire offering of the

combined “Software Requirements Engineering” and “System Requirements Analysis and

Modeling” class during the Fall 2013 semester. The literature review identified related research

with this current one that describes the pedagogy to teach systems engineering concepts to

software engineering students and also software engineering concepts to systems engineering

students
[2-4]

. The difference from this current work is given by the target student audience level

(undergraduate vs. graduate student audience), and the application domain (general concepts vs.

specific requirements engineering topic).

From this point forward, the paper is structured as follows: Section 2 presents specific

background information and outlines the motivation for the proposed course integration. Then,

Section 3 presents in detail the entire teaching experience coming from the combined software

and systems requirements engineering course. Finally, Section 4 outlines the most important

lessons learned during the semester that are to be applied in the subsequent Spring semester

offerings of the combined sections for the software and systems quality and project management

courses. The Appendices located at the end of the paper present the course catalog descriptions

of the two requirements engineering courses under evaluation in this work, and a problem

statement example for one of the assigned requirements engineering course projects.

2. Background and Motivation

In the last decades, the need for systems engineering increased exponentially due to the upsurge

of larger and more complicated systems being developed and operated worldwide. The academe

responded with a sustained growth in the number of systems engineering graduate programs

offered nationally and internationally
[5]

. Also, it is obvious to everyone, not only to the

computing and engineering communities, the enormous growth experienced in the last decades

by the software industry. Consequently, the academe responded as well, not only by preparing

competitive graduates in computer science and computer engineering who have the adequate

knowledge to build, operate and maintain software systems, but also by proposing stand-alone

software engineering programs.

The motivation for implementing the “software and systems education integration project” at

Embry-Riddle Aeronautical University is twofold:

• First, as the engineered systems continue to grow in complexity and depend even more

on software execution, the new systems engineering graduates require more in-depth

software engineering knowledge than ever before to be able to carry out the systems

engineering design and operational tasks.

• Second, software engineering also recognizes the increased complexity of today’s

systems, the expected even larger complexity of future’s systems and the widespread

inclusion of software in almost every type of engineered system built today and/or

envisioned for the future.

These facts prompted the engineering faculty at Embry-Riddle to seek a solution for the

integration of the related software engineering and systems engineering courses part of the

graduate engineering curriculum. The expected outcomes of this integration are: P
age 24.127.4

• An increased exposure to the software engineering development methods and tools for

the electrical and computer engineering, and potentially other engineering disciplines

students who consider entering systems engineering career paths; and,

• An increased familiarity with the systems engineering process, systems analysis methods

and tools, and system operational maintenance for the software engineering students who

consider careers in software development for large-scale systems.

There is consensus among the industry practitioners that superior requirements engineering is

critical for the development of quality systems
[6]

. Moreover, academe people consider that the

software industry use of requirements engineering is obstructed by relatively poor understanding

of requirements engineering practices and benefits. In this context, teaching requirements

engineering at university level becomes a critical responsibility
[7]

. Scheduled for the Fall 2013

semester, the “Software Requirements Engineering” course was found to served well the

software and systems engineering education integration purpose, so the corresponding systems

engineering course (“System Requirements Analysis and Modeling”) was made available for the

graduate engineering students before the start of the Fall semester. Since there is a clear

commonality across the entire software engineering requirements and systems engineering

requirements processes, the integration of the two courses was expected to occur without major

barriers. Reputed software engineering academics also acknowledged this commonality and

referenced it widely in literature
[8]

. The Embry-Riddle Aeronautical University Graduate Catalog

course descriptions of the two courses are presented in Appendix A.

3. Software and Systems Integration Framework for Teaching Requirements Engineering

3.1 Course Preparation. Several steps taken by the instructor during the course preparation

stages are outlined below. First, the instructor acknowledged that this combined “software and

systems requirements” section is, nevertheless, a course in Requirements Engineering. This is the

overarching theme of both course syllabi*, as both of them emphasize the requirements

engineering process stages. Then, in the same manner as real-life requirements engineers, the

instructor had to elicit the specific requirements from the two syllabi, by carefully analyzing the

syllabi course descriptions and performing an analysis of the software and systems requirements

domains. Given the fact that the enrolled students are likely to have either software or systems

development background, the course preparation, management, and evaluation of course learning

outcomes needs to address the common aspects of software and system requirements, as well as

reconcile the differences between the two.

Since there is no definitive text that covers both the software and systems engineering

requirements, the textbook selection could be a time-consuming process with no definitive

selection. Rather than requiring a single text, the instructor decided to recommend several

authoritative resources from both the software engineering and systems engineering areas and

prepared and made available the entire course materials on the Blackboard system for the

students to download. Additional materials, listed next, were also made available to the students

to compare the seemingly different requirements engineering approaches of the software and

systems engineering disciplines.

*The two course syllabi are available upon request by contacting the course instructor at: babicear@erau.edu

P
age 24.127.5

• INCOSE Systems Engineering Handbook
[9]

• NASA Systems Engineering Handbook
[10]

• Systems Engineering Body of Knowledge (SEBoK)
[1]

• Software Engineering Body of Knowledge (SWEBoK)
[11]

The course learning outcomes were designed to provide the students with an understanding of

the software and system requirements engineering process and its fundamental role in the

software and systems engineering process. Upon the completion of the course, the students are

expected to be able to:

• Describe the essential elements of software and system requirements engineering.

• Identify the major issues in large systems and software systems development.

• Describe and understand various requirements specification techniques.

• Select a set of requirements techniques, tools, and/or languages that help in analyzing

software and systems requirements.

• Identify tools and techniques for software and systems requirements management.

• Develop, analyze, and critique requirements and specifications for large-scale software

and systems.

3.2 Highlighting Similarities of Software and Systems Engineering Disciplines. The tentative

course schedule proposed in the combined course syllabus included the topics one expects are

covered in a requirements engineering course, such as:

• Requirements Stakeholders

• Requirements Elicitation

• Requirements Analysis

• Requirements Specification

• Requirements Verification and Validation

• Requirements Management

• Requirements Standards and Tools

One key aspect that supports the software and systems engineering integration project is the fact

that the terminology used for software requirements engineering and systems requirements

engineering is similar. Even though the disciplines of software engineering and systems

engineering may have different terminology, in the case of requirements engineering, the

terminology is practically the same. At the same time, all the above listed requirements

engineering topics can be covered from either the software or systems engineering points of view

individually. However, the key for the software and systems engineering integration effort is to

cover the above topics from a common overall system viewpoint. Given the instructor’s

background the task was carried out using systems engineering integration principles. Each of

the specific topics listed above was addressed during lectures with the system viewpoint in mind.

Also the homework assignments and class discussions were designed and conducted with the

system viewpoint as focal point.

There was no coding required, which was somehow unexpected especially for the software

engineering students, as uncovered from the student feedback received during the semester. But,

the class time was wisely used to relate all the covered material to real-world requirements

P
age 24.127.6

engineering projects. All course lectures were complemented with real-world examples from

software and systems engineering area to familiarize the students with real-world project

implementations. Also, the class discussions and assignments asked them to understand,

discover, specify, analyze, and verify system requirements for the duration of the entire semester.

There was a very fine level of detail targeted for the requirements specification process in both

class lectures and discussions, and all the credit assignments. As the course progressed, it

became obvious to the students that the lack of coding did not reduce the amount of work

expected in the course, as all the specified and analyzed requirements were always checked for

accuracy, completeness, consistency, and correctness.

3.3 Accommodating Differences of Software and Systems Engineering Disciplines. The most

obvious difference between software and systems engineering arises from the intangible nature

of software and the physical nature of the hardware. But this difference is undergoing a

continuous dilution as mentioned at the beginning of this paper: most of today’s engineered

systems are composed of integrated hardware and software components, and the process is only

going in one direction, towards more and more integration.

Starting with the course kick-off, the students enrolled in the engineering graduate master’s

programs expect that the education received during the course will help them in their future

careers. As such, they anticipate that the course lectures and assignments will resemble real-

world projects such that they become prepared to apply the knowledge and skills in projects that

have relevance to real-world organizations. Besides the acknowledged commonality mentioned

in Section 3.2 and above, there are also certain differences between the software and systems

engineering disciplines, as the former looks mainly at software development, while the latter

considers the entire engineering effort. Since both the software and systems requirements follow

practically the same requirements engineering process, the differences would only be a small

barrier from the teaching point of view, if not for the integration of the students’ dissimilar views

of software and systems requirements coming from their different academic backgrounds.

Therefore, the instructor designed the course in such a manner that students themselves were

encouraged to attempt the reconciliation of their different views through participation in

constructive discussions.

3.4 Software and Systems Requirements Engineering Course Assignments. As with all other

engineering course offerings, if the instructor wants to successfully achieve the course learning

outcomes, the course must include more than traditional lectures. The students must be able to

involve themselves in new experiences, in this case by working on complete requirements

engineering projects. This approach, depicted in Fig. 1, is called in the literature experiential

learning, and includes the students’ experience, their skills to observe and reflect on the

experiences, their abilities to learn from the experience, and their proficiency to try out the

learned facts
[12]

. A similar pedagogical approach was identified by the literature review in other

requirements engineering works. For example, a comparable approach, called “learning by

doing,” exhibits the goal to provide exposure to student teams in eliciting and specifying

requirements
[13]

.

P
age 24.127.7

Fig. 1: The Kolb experiential learning framework

[12]

Out-of-class assignments, composed of homework assignments and the course project, accounted

for half of the course grade, with the remaining half coming from the in-class tests. Both the

homework assignments and the course project were designed such that the rationale for correctly

answering or addressing the questions follows the above experiential learning framework. This

was particularly clear for the course project, which was carefully designed to achieve all the

experiential learning aspects. The description of the course project assignment, which accounts

for 25% of the final course grade, is presented below.

The purpose of the course project is to provide students with the opportunity to work on a one-

month long project in which they can utilize their requirements engineering process knowledge

acquired during the course. The main learning objective of the course project is to test students’

abilities and knowledge necessary to successfully complete a real-world requirements

engineering project. This is accomplished through the completion of the following project

assignment: students are tasked to “prepare a written report in the form of a Requirements

Document using the IEEE Std 830-1998 Recommended Practice for Software Requirements

Specifications
[14]

 template for your selected system.” The students have the choice of selecting

one of the systems listed by the instructor or prepare their own system proposal, in which case

the instructor approval is required to assure the same amount of work as in one of the instructor-

proposed systems. Each of the instructor-proposed systems, listed below, comes with a one-page

problem statement description which helps students to make informed decisions for their project

selection.

• Airline Management Information System

• Airport Management Information System

• Air Traffic Control Decision Support System

• Automated Material Handling System

• Condition Monitoring and Fault-Recovery System

• Enterprise Decision Support System

• Multi-Agent Decision Support System

• Remote Healthcare Monitoring System

• Supply Chain Information System

Concrete

Experience

Reflective

Observation

Abstract

Conceptualization

Active

Experimentation

Having an experience

Reflecting on the experience

Learning from the experience

Trying out what was learned

P
age 24.127.8

• System of Systems Integration

• Wireless Sensor Network System

All the instructor-proposed projects are former actual software and systems engineering projects

in which the instructor worked in the last several years. This fact helped in providing significant

informed feedback to students during their work on the project and after submission as part of

the grading process. As an example, Appendix B provides the problem statement the students

received for the first project listed above, the “Airport Management Information Systems”

project.

The detailed project instructions ask students to “read carefully the IEEE Std 830-1998

Recommended Practice for Software Requirements Specifications as it provides valuable

information related to all the parts of the requirements document.” The students are also advised

that it may be also useful to review the literature in the area of their selected system such that

they can provide a well-defined purpose, scope, overall description, as well as identify specific,

not trivial, requirements for their selected system. The deliverables of the project mention that

the students’ Requirements Document submission “should include all section of the Prototype

SRS Outline depicted at page 11 of the IEEE Std 830-1998 Recommended Practice for Software

Requirements Specifications.” In addition, the students’ submissions should also address the

following tasks:

• Identify the section(s) of your Requirements Document where the information related to

the requirements’ customers and stakeholders is to be presented. Provide the customers

and stakeholders information as part of the document or as an Appendix.

• Identify the section(s) of your Requirements Document where, besides the natural

language requirements, the requirements analysis and specification process would benefit

from the use of diagrams (use cases, data flow diagrams, state-machine-diagrams, etc.) to

better understand the needed functionality. Provide the identified diagrams as an

Appendix to the Requirement Document.

• Identify the section(s) of your Requirements Document where the listed requirements

would benefit from a formal verification and validation process. Provide the verification

and validation process as an Appendix to the Requirement Document.

• Identify the section(s) of your Requirements Document where the listed requirements

would benefit from the use of traceability methods to provide a better requirements

management. Provide the identified traceability techniques as an Appendix to the

Requirement Document.

4. Lessons Learned for Software and Systems Engineering Integration

In only a matter of weeks from the beginning of classes, the instructor noticed the different

approaches of the students in terms of the real-life examples they relate to during class

discussions. It is the needed work of the course instructor to fine tune the seemingly different

approaches of “software or systems” and use them in a “software and systems” integration

framework throughout the semester long course. Lectures, discussions, assignments, and case

studies are to be developed with the “software and systems” integration framework in mind.

The end-of-the-semester student evaluation of the course revealed that the students were

favorable of the instruction received in the combined software and systems requirements

P
age 24.127.9

engineering course. Given the challenges raised by the integration aspects of the software and

systems engineering disciplines, the instructor considers that the most important assessment

related to the “software and systems education integration project” effort is the achievement of

the course learning outcomes. A majority of 66.7% of the enrolled students selected the Strongly

Agreed option, and another 33.3% selected the Agreed option when asked to identify themselves

with the following statement: “I achieved the learning outcomes for this course.” There were no

students that selected any of the remaining options (disagree or strongly disagree) for this most

important question. In another question, the students were asked to identify themselves with the

following statement: “The learning outcomes were addressed via the learning activities in the

course.” A majority of 55.6% of the enrolled students selected the Strongly Agreed option, and

another 44.4% selected the Agreed option. Once again, there were no students that selected any

of the remaining options (disagree or strongly disagree) for this equally important question. Fig.

2 presents graphically the student evaluation of the course learning outcomes depicted above.

Fig. 2: Student evaluation of the course learning outcomes

As always, anonymous student written feedback is also very useful for the purpose of course

assessment and continuous improvement. The comments received from the enrolled students

proved that the integration of the software requirements engineering and system requirements

engineering processes was successful. One student noted that: “The breadth of the course

provided a way to not only fully understand how to write requirements, but also, the activities

and important aspects that surround that process…I had not learned these surrounding activities

in depth before, and the time spent on these non-writing-requirements topics were likely the most

valuable from the course.” The student feedback clearly points out the successful integration

between the software requirements engineering and the systems engineering processes

throughout the course.

As outlined in Section 2, the overall objective of the “software and systems education integration

project,” attempts to elevate the future careers of Embry-Riddle engineering graduates, by

aiming to:

• Equip software engineering students with the systems engineering process knowledge,

systems analysis methods and tools, and system operational maintenance practices to

effectively perform in large-scale software development projects; and,

P
age 24.127.10

• Arm systems engineering and electrical and computer engineering students with adequate

software engineering process knowledge, software development and quality assurance

techniques to become proficient in managing and communicating across the physical and

cyber domains with all the stakeholders involved in the development of large-scale cyber-

physical systems.

From this perspective, the instructor reports the first success of the “software and systems

education integration project,” with the integration of the software and systems requirements

engineering courses and looks forward to offering the combined sections for the software and

systems quality and project management courses in the Spring 2014 semester.

References

1. Pyster, A., Olwell, D., Hutchison, N., Enck, S., Anthony, J., Henry, D., and Squires A. (eds.), Guide to the

Systems Engineering Body of Knowledge (SEBoK) version 1.0, The Trustees of the Stevens Institute of

Technology, 2012.

2. Fairley, R. and Willshire, M. J., Teaching software engineering to undergraduate systems engineering

students, ASEE Annual Conference and Exposition, Vancouver, Canada, June 2011.

3. Fairley, R. and Willshire, M. J., Teaching systems engineering to software engineering students, IEEE-CS

Conference on Software Engineering Education and Training, Honolulu, HI, May 2011.

4. Callele, D. and Makaroff, D., Teaching requirements engineering to an unsuspected audience, Proceedings

of the SIGCSE Technical Symposium on Computer Science Education, Houston, TX, March 2006.

5. Fabrycky, W. J., Systems engineering: Its emerging academic and professional attributes, Proceedings of

the 117
th

 ASEE Annual Conference and Exposition, Louisville, KY, June 2010.

6. Mead, N. R., Shoemaker, D., and Ingalsbe, J., Teaching security requirements engineering using SQUARE,

Fourth International Workshop on Requirements Engineering Education and Training, Atlanta, GA, 2009.

7. Danielsen, O., Teaching requirements engineering: An experimental approach, Norwegian Information

Technology Conference, Gjovik, Norway, 2010.

8. Laplante, P. A., Requirements engineering for software and systems, Taylor and Francis Group, 2009.

9. INCOSE Systems Engineering Handbook v. 3.2, INCOSE-TP-2003-002-03.2, International Council on

Systems Engineering, 2010.

10. NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev1, National Aeronautics and Space

Administration, 2007.

11. Software Engineering Body of Knowledge (SWEBOK) version 2, IEEE Computer Society, 2004.

12. Kolb, D. A., Experiential learning: Experience as a source of learning and development, Prentice Hall,

Inc., 1983.

13. Suri, D. and Durant, E., Teaching requirements through interdisciplinary projects, Proceedings of the 2004

ASEE North Midwest Regional Conference, Milwaukee, WI, 2004.

14. IEEE Std 830-1998 Recommended Practice for Software Requirements Specifications, IEEE Computer

Society, 1998.

P
age 24.127.11

Appendix A: Catalog Course Descriptions

Software Requirements Engineering: This course is concerned with the development,

definition, and management of requirements for a software system or product. Topics include the

software requirements process, requirements elicitation, requirements analysis, requirements

specification, requirements verification and validation, requirements management, and

requirements standards and tools. Students will participate in individual and group exercises

related to software requirements engineering tasks.

System Requirements Analysis and Modeling: This course is concerned with the development,

definition, and management of requirements for system or product. Topics include the system

requirements process, requirements elicitation techniques, alternative requirements analysis

techniques, requirements specification, requirements verification and validation, requirements

management, and requirements standards and tools. Issues such as stakeholder identification, risk

analysis, trade off analysis as it relates to the requirements will be covered.

Appendix B: Course Project Problem Statement

Airport Management Information System: Currently, many small and medium-sized airports

operate using traditional procedures such as: self-reporting of aircraft data for billing purposes by

the air carriers, manual updates on flight information, and long-term lease agreements for gates

and ticket counters. Self-reporting billing is imprecise and puts additional labor strains on air

carriers that try to avoid or are in the process of recovering from economic hardships. The self-

reporting procedure is utilized by air carriers to report gate usage and landed weights to the

airport management. Air carriers may unintentionally forget to report data, or report late or

inaccurate data. The understaffed and overworked personnel of air carriers are also responsible

for updating the arrivals/departures flight information displays that can be found in any airport,

called Multiple User Flight Information Displays (MUFIDS). This task, on occasion, leads to

inadvertent misinformation. A potential opportunity for change is in the current lease structure.

Gates and ticket counters are currently on long-term leases with the air carriers allowing the

opportunity to maximize their branding at the gates and ticket counters, which limits the airport

growth and profitability. Gates that are under leases cannot be utilized to bring new air carriers to

the airport. This dilemma also extends to the ticket counters. If there are gates for flights but no

ticket counters, then delays occur within the system. Dynamic flexible systems are needed to

automate certain airport functions to overcome long delays and facilitate increases in the volume

of passengers. As of 2007, some small and medium-sized airports started a series of tests for

switching to a per-use policy system utilizing two gates. If fully implemented, this policy will

eventually lead to the airport controlling all of the gates and ticket counters without long-term

leases to air carriers. In view of the potential implementation of the new policy system, the

airport management has identified the need for an automated system to manage the fees to be

collected from the air carriers. The new automated system should be able to track these fees

throughout the system, and give real-time updates on the financial transactions between the

airport and airlines. Moreover, current operations at the airport terminal also use the error-prone

manually update process for the arrival/departures information displays. The new system needs

to be able to automatically update the MUFIDS without human intervention, thus providing real-

time information on flights to air travelers in the terminal.

P
age 24.127.12

