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1 Abstract

The Euler-Bernoulli model provides a reliable method for calculating the deflection behavior
of a single-link, flexible rotating arm. Previous work [4] has demonstrated a method of solv-
ing the Euler-Bernoulli equation for the displacement of the end effector, using variational
methods. Other work [3, 5, 6, 8] has explored the feedback control of a flexible arm. The pur-
pose of this paper is to derive the solution to the Euler-Bernoulli equation using Duhamel’s
principle as an illustrative alternative or even potential exercise for undergraduate students
who have limited exposure to variational methods.

2 Introduction

The planar one-degree-of-freedom flexible arm is a canonical problem for students and re-
searchers investigating novel feedback control algorithms, as well as PDE numerical and
theoretical solution methods. The purpose of this paper is to show that it can also serve
as a pedagogical tool for undergraduate PDE instructors. Generally, researchers have ap-
proached the problem via either energy methods (e.g. Hamilton’s principle [7]) which are
generally intractable to undergraduates, or by eigenfunction expansion. Eigenfunction ex-
pansion is an approach tractable to undergraduates; however, researchers traditionally do
not handle the nonhomogeneous boundary conditions in manner consistent with typical
undergraduate instruction. Here, we outline the solution in a way that parallels typical
PDE instruction regarding nonhomogeneous boundary conditions, namely, to convert the
nonhomogeneous boundary problem into a homogeneous boundary problem by adding an
appropriate (nonhomogeneous) forcing term to the field equation. This idea is motivated
by Duhamel’s principle and can often be seen in textbooks, illustrated using the heat equa-
tion [1].

Following [4], the Euler-Bernoulli model is used to model the dynamics of the flexible
beam. This model yields the following partial differential equation and boundary conditions.

∗Address all correspondence to this author.
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y(4)(x, t) +
ρ

EI
ÿ(x, t) = 0, 0 < x < L, t > 0, (1a)

y(0, t) = 0, t > 0, (1b)

y′′(L, t) = 0, t > 0, (1c)

Jÿ′(0, t)− EIy′′(0, t) = τ(t), t > 0, (1d)

mÿ(L, t)− EIy′′′(L, t) = 0 t > 0, (1e)

where y(x, t) is the deflection of the beam and the other parameters are listed in Table 1.
Boundary condition (1d) is non-homogeneous, so we assume the solution can be decomposed
[1] into the following two parts:

y(x, t) = w(x, t) + v(x, t) (2)

where w(x, t) is the solution to a second boundary-value-problem (BVP), and v(x, t) is a
function that we introduce in order to homogenize the boundary conditions of that BVP.
Substituting (2) into (1) yields the following:

w(4)(x, t) +
ρ

EI
ẅ(x, t) = −v(4)(x, t)− ρ

EI
v̈(x, t), 0 < x < L, t > 0, (3a)

w(0, t) + v(0, t) = 0, t > 0, (3b)

w′′(L, t) + v′′(L, t) = 0, t > 0, (3c)

J (ẅ′(0, t) + v̈′(0, t))− EI (w′′(0, t) + v′′(0, t)) = τ(t), t > 0, (3d)

m (ẅ(L, t) + v̈(L, t))− EI (w′′′(L, t) + v′′′(L, t)) = 0, t > 0, (3e)

If we define
f(x, t) := −v(4)(x, t)− ρ

EI
v̈(x, t) (4)

and choose the following conditions for v(x, t):

v(0, t) = 0 (5a)

v′′(L, t) = 0 (5b)

Jv̈′(0, t)− EIv′′(0, t) = τ(t) (5c)

mv̈′(L, t)− EIv′′′(L, t) = 0 (5d)

then the boundary value problem in (3) is transformed into

w(4)(x, t) +
ρ

EI
ẅ(x, t) = f(x, t), 0 < x < L, t > 0, (6a)

w(0, t) = 0, t > 0, (6b)

w′′(L, t) = 0, t > 0, (6c)

Jẅ′(0, t)− EIw′′(0, t) = 0, t > 0, (6d)

mẅ(L, t)− EIw′′′(L, t) = 0, t > 0, (6e)

which is a partial differential equation with homogeneous boundary conditions, but with
a forcing function f(x, t). Thus, the non-homogeneity is transferred from the boundary
conditions to the field equation.
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Beam Length L (cm) 40
Beam Height H (cm) 2.3

Beam Thickness T (cm) 0.18
Mass of End Effector m (g) 12.3

Linear Mass Density ρ (kg/m) 7.84× 10−2

Young’s Modulus E (N/m
2
) 70× 109

Cross-Sectional Moment of Inertia I (m4) 3.1491 ×10−12

Motor Hub Moment of Inertia J (kg-m2) 0.01

Table 1: Parameters of the flexible arm [8]

3 The Forcing Function

The forcing function is a function of the hub torque, τ(t), and some polynomial in x. To
calculate f(x, t), we first find v(x, t). The only restriction on v(x, t) is that it must satisfy
the boundary conditions in (5). We assume that v(x, t) is separable:

v(x, t) = g(x)τ(t). (7)

where τ(t) is the hub torque and we choose g(x) as

g(x) = c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x+ c0, (8)

where the coefficients cn are found by translating the conditions in (5) into the following
conditions for g:

g(0) = 0 (9a)

g′′(L) = 0 (9b)

Jg′(0)τ̈(t)− [EIg′′(0) + 1] τ(t) = 0 (9c)

mg(L)τ̈(t)− EIg′′′(L)τ(t) = 0 (9d)

From (9c) and (9d), we also have that

g′(0) = 0 (9e)

EIg′′(0) + 1 = 0 (9f)

g(L) = 0 (9g)

g′′′(L) = 0 (9h)

Normally this would not be mathematically justifiable, but from a physical perspective we
know that we have arbitrary control of τ and τ̈ . Therefore there is no fixed relationship
between them and so it follows that the coefficients in (9c) and (9d) must be 0. Application
of these boundary conditions yields a solution for g(x), plotted in Figure 1.

4 The Eigenfunctions

The method of eigenfunction expansion begins by finding the eigenfunctions for the unforced
(homogeneous) system [2], i.e. equation (6a) with f(x, t) = 0:

w(4)(x, t) +
ρ

EI
ẅ(x, t) = 0. (10)
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Figure 1: The function g(x) represents a distributed forcing function that would displace
the beam into the same shape as the application of a boundary hub torque.

We assume that the solution w(x, t) is separable and has the form

w(x, t) =

∞∑
n=0

Xn(x)Tn(t). (11)

Substituting this into the PDE for a particular n and rearranging gives

EIX
(4)
n (x)

ρXn(x)
= − T̈n(t)

Tn(t)
= ω2

n. (12)

which yields the following ODE:

X(4)
n − β4

nXn = 0, (13)

where

β4
n =

ρω2
n

EI
. (14)

We assume that the eigenfunctions Xn(x) have the following form

Xn(x) = an cosβnx+ bn sinβnx+ cn coshβnx+ dn sinhβnx (15)

and we translate the boundary conditions from (6) into the following:

X(0) = 0 (16a)

X ′′(L) = 0 (16b)

Jω2X ′(0) + EIX ′′(0) = 0 (16c)

mω2X(L) + EIX ′′′(L) = 0 (16d)
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Taking the first three derivatives of (15) and using (16) yields a system of four equations,
represented by the following matrix equation:

Z(β)


an
bn
cn
dn

 =


0
0
0
0

 (17)

where

Z(β) =


1 0 1 0

− cos βL − sin βL cosh βL sinh βL
−1 Jβ3/ρ 1 Jβ3/ρ

sin βL+ m
ρ β cos βL − cos βL+ m

ρ β sin βL sinh βL+ m
ρ β cosh βL cosh βL+ m

ρ β sinh βL

 (18)

In order to solve for an, bn, cn and dn, we find β for which Z(βn) is singular. Ignoring the
trivial solution, we assume an, bn, cn, dn non-zero. For each βn, the coefficients an, bn, cn, dn
can be computed numerically by finding the null-space of Z(βn).

4.1 When β = 0

When β = 0, we have a different form for X0(x). Since we have that

X
(4)
0 = 0, (19)

we assume that X0(x) is a 3rd order polynomial.

X0(x) = ax3 + bx2 + cx+ d. (20)

Again, we use the boundary conditions in (16) (with ω = 0) and get that a = b = d = 0
and c is a free variable. Without loss of generality we will let c = 1. Then the eigenfunction
for β = 0 is

X0(x) = x. (21)

5 Solution Via Orthogonality

Henceforth, we assume that f(x, t) 6= 0, so it is no longer true that T̈ + ω2T = 0. From [4]
we have the following orthogonality condition on the eigenfunctions:∫ L

0

ρXr(x)Xn(x)dx+mXr(L)Xn(L) + JX ′r(0)X ′n(0) =

{
0 n 6= r

Mr n = r
(22)

and it follows from (11) that∫ L

0

w(x, t)ρXr(x) = Tr(t)Mr −
∞∑
n=0

Tn(t)mXr(L)Xn(L)−
∞∑
n=0

Tn(t)JX ′r(0)X ′n(0) (23)

Recall that the field equation is

w(4)(x, t) +
ρ

EI
ẅ(x, t) = f(x, t). (24)
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Multiplying each side by Xr(x) and integrating gives us∫ L

0

Xr(x)[w(4)(x, t) +
ρ

EI
ẅ(x, t)]dx =

∫ L

0

Xr(x)f(x, t)dx. (25)

Rewrite (25) as∫ L

0

EIXr(x)w(4)(x, t)dx+

∫ L

0

ρXr(x)ẅ(x, t)dx =

∫ L

0

EIXr(x)f(x, t)dx. (26)

Using integration by parts four times on the first term and using boundary conditions from
(6) and (16), we get

mXr(L)ẅ(L, t) + JXr(0)ẅ′(0, t) + Jω2X ′r(0)w′(0, t) +mω2X(L)w(L, t)+∫ L

0

EIX(4)
r w(x, t)dx+

∫ L

0

ρXr(x)ẅ(x, t)dx =

∫ L

0

EIXr(x)f(x, t)dx (27)

where we have from (23) that∫ L

0

EIX(4)
r w(x, t)dx = ω2

r

∫ L

0

ρXrw(x, t)dx (28)

= ω2
r

[
TrMr −

∞∑
n=0

TnmXr(L)Xn(L)−
∞∑
n=0

TnJX
′
r(0)X ′n(0)

]
(29)

and ∫ L

0

ρXr(x)ẅ(x, t)dx =
d2

dt2

∫ L

0

ρXrw(x, t)dx (30)

= T̈rMr −
∞∑
n=0

T̈nmXr(L)Xn(L)−
∞∑
n=0

T̈nJX
′
r(0)X ′n(0) (31)

We see that substituting (11), (29) and (31) into (27) results in(
T̈r(t) + ω2Tr

)
Mr =

∫ L

0

EIXr(x)f(x, t)dx. (32)

Now, substituting in (4) and (7) gives us(
T̈r(t) + ω2Tr

)
Mr = −τ(t)EI

∫ L

0

Xr(x)g(4)(x)dx− τ̈(t)ρ

∫ L

0

Xr(x)g(x)dx. (33)

If we perform integration by parts four times on

EI

∫ L

0

Xr(x)g(4)(x)dx, (34)

using the boundary conditions from (9) and (16), we get

ω2
r

∫ L

0

ρXr(x)g(x)dx−X ′r(0). (35)

6



If we then define

Ar =

∫ L

0

ρXr(x)g(x)dx, (36)

we can simplify (33) to the following:(
T̈r(t) + ω2

rTr(t)
)
Mr = −τ(t)

(
ω2
rAr −X ′r(0)

)
− τ̈(t)Ar. (37)

Taking the Laplace transform and rearranging terms gives us

Tr(s) = −τ(s)

(
Ar
Mr
− X ′r(0)

Mr(s2 + ω2
r)

)
. (38)

Making use of (11) and (2) gives us

y(x, s) = g(x)τ(s)− τ(s)

∞∑
r=0

Xr(x)

(
Ar
Mr
− X ′r(0)

Mr(s2 + ω2
r)

)
(39)

Proceeding formally, if we expand g(x) using the eigenfunctions Xr(x) as its basis, we can
define gr such that

g(x) =

∞∑
r=0

grXr(x). (40)

Then

gr =

∫ L
0
ρXr(x)g(x)dx∫ L

0
ρX2

r (x)dx+mX2
r (L) + J (X ′r(0))

2
=
Ar
Mr

(41)

Using (41), equation (39) can now be written as

y(x, s) = τ(s)

(
g(x)−

∞∑
r=0

grXr(x)

)
+ τ(s)

∞∑
r=0

Xr(x)X ′r(0)

Mr(s2 + ω2
r)

(42)

and (40) implies that

y(x, s)

τ(s)
=

∞∑
r=0

Xr(x)X ′r(0)

Mr(s2 + ω2
r)

(43)

Since X0(x) = x,

y(x, s)

τ(s)
=

x

M0s2
+

∞∑
r=1

Xr(x)X ′r(0)

Mr(s2 + ω2
r)

(44)

6 Simulation

Putting the solution back into the time domain gives us

y(x, t) = τ(t)

(
x

M0
t+

∞∑
r=1

Xr(x)X ′r(0)

Mr

sin (ωrt)

ωr

)
. (45)

We use the following coordinate transformation [4]:

y(x, t) = u(x, t) + xφ(t) (46)
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where
φ(t) = y′(0, t) (47)

and
u(x, t) = y(x, t)− xφ(t) (48)

The objective here is to solve for the beam deflection u(x, t) for a range of t-values, and then
rotate these solutions about the origin to account for rigid body motion. Note that xφ(t)
is an arc length and the beam deflection u(x, t) is a straight line that approximates an arc
length for small deflections. See Figure 2. Performing this transformation gives us

xφ(t)

u(
x,
t)

x1

x2

Figure 2: The coordinate transformation

u(x, t) = τ(t)

( ∞∑
r=1

sin (ωrt)

ωr

X ′r(0)

Mr
(Xr(x)− xX ′r(0))

)
(49)

Figure 3 shows u(x, t) plotted with constant step input τ for several values of t. In this
simulation, only the first vibrational mode is represented for visual clarity.

7 Summary

In this paper, we illustrate a modal solution method for the Euler-Bernoulli flexible rotating
arm that can serve as a pedagogical reference for undergraduates studying partial differential
equations. The method’s distinctive contribution is to convert the nonhomogeneous bound-
ary conditions into homogeneous boundary conditions by adding an appropriate forcing
function to the field equation.
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Figure 3: Step response with τ(t) = 1 for t ≥ 0.
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