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A Taste of Python - Discrete and Fast Fourier Transforms 
 
This paper is an attempt to present the development and application of a practical teaching 
module introducing Python programming techniques to electronics, computer, and 
bioengineering students at an undergraduate level before they encounter digital signal processing 
and its applications in junior or senior level courses. 
 
The Fourier transform takes a signal in time domain, switches it into the frequency domain, and 
vice versa. Fourier Transforms are extensively used in engineering and science in a vast and 
wide variety of fields including concentrations in acoustics, digital signal processing, image 
processing, geophysical processing, wavelet theory, and optics and astronomy. The Discrete 
Fourier Transform (DFT) is an essential digital signal processing tool that is highly desirable if 
the integral form of the Fourier Transform cannot be expressed as a mathematical equation. The 
key to spectral analysis is to choose a window length that suits the signal to be analyzed, since 
the length of the window used for DFT calculations has a substantial impact on the information 
the DFT can provide.  The operation count of the DFT algorithm is time-intensive, and as such a 
number of Fast Fourier Transform methods have been developed to adequately perform DFT 
efficiently. 
 
This paper will explain how this learning and teaching module was instrumental in progressive 
learning for students by presenting Python programming and the general theory of the Fourier 
Transform in order to demonstrate how the DFT and FFT algorithms are derived and computed 
through leverage of the Python data structures. This paper thereby serves as an innovative way to 
expose technology students to this difficult topic and gives them a fresh taste of Python 
programming while having fun learning the Discrete and Fast Fourier Transforms. 
 
1.   Background 
 
Engineering departments are often confronted with the necessity to update laboratory exercises 
and equipment with the latest emerging technological trends within tight budget constraints. 
Another challenge faced by departments pertains to satisfying the Engineering Technology 
Accreditation Commission (ETAC) criteria for capstone senior project experience within the 
curriculum. In this paper we will explain how we attempted to solve these challenges by 
exposing students to new emerging software trends for computational applications in engineering 
and life sciences. 
 
2.   Introduction 
 
Although DSP algorithms may be implemented on any powerful processor, specialized digital 
signal processing hardware enables the greatest speed and efficiency.4 Digital signal processors 
designed specifically for operations common in DSP have special features that permit them to 
accomplish in real time what other processors cannot achieve. Real time means that outputs keep 
pace with the collection of input samples during actual operations. For some operations such as 
filtering, this means a new output sample can be produced as each new input sample is received. 
For others such as FFTs, the output information can be produced only when a block of input 
samples has been recorded.   A DFT decomposes a sequence of values into components of 
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different frequencies. This operation is useful in many fields, but computing it directly from the 
definition is often too slow to be practical. 
 
A FFT is a way to compute the same result more quickly; computing a DFT of N points in the 
naive way, using the definition, takes O (N 2) arithmetical operations, while an FFT can compute 
the same result in only O(N log N) operations. The difference in speed can be substantial, 
especially for long data sets where N may be in the thousands or millions. In practice, the 
computation time can be reduced by several orders of magnitude in such cases, and the 
improvement is roughly proportional to N / log (N). This huge improvement made many DFT- 
based algorithms practical; FFTs are of great importance to a wide variety of applications as 
described earlier. 
 
3.   Procedure 
 
All engineering technology, computer information systems (CIS) and Networking students at our 
school take an introductory computing course where they use the Raspberry PI computer and an 
interactive shell named Integrated Development Environment (IDLE) for very basic Python 
programming. Python is available for download from  https://www.Python.org/download  which 
is also preinstalled on the Raspberry PI SD card. 
 
Python is a general-purpose interpreted, interactive, object-oriented and high-level programming 
language. Python was created by Guido van Rossum in the late eighties and early nineties. It is an 
open source programming language that runs on many platforms including Linux, Mac OS X and 
Windows. It is widely used and actively developed, has a vast array of code libraries and 
development tools, and integrates well with many other programming languages, frameworks and 
musical applications. 

 
 
4.   Python for Scientific Computing 

 
 

Python’s scientific computing prowess comes largely from the combination of three related 
extension modules: NumPy, SciPy and Matplotlib. NumPy5 [Oliphant, 2006] adds a 
homogenous, multidimensional array object to Python. It also provides functions that perform 
efficient calculations based on array data.

 
 NumPy, which stands for Numerical Python is written in C, and can be extended easily 

via its own C-API. As many existing scientific computing libraries are written in Fortran, 
NumPy comes with a tool called f2py which can parse Fortran files and create a Python 
extension module that contains all the subroutines and functions in those files as callable 
Python methods. With NumPy you will receive programs such as PI or the ability to 
easily create matrices. 

 
 

 SciPy, which stands for Scientific Python, builds on top of NumPy, providing modules 
that are dedicated to common issues in scientific computing, and so it can be compared to 
MATLAB toolboxes. The SciPy modules are written in a mixture of pure Python, C and 
Fortran, and are designed to operate efficiently on NumPy arrays. A complete list of 
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SciPy modules is available online at http://docs.scipy.org, but examples include file 
input/output (scipy.io) and signal processing (scipy.signal). Built into the library, or 
package, of SciPy is the FFT, or fast Fourier Transform. This is a key word within the 
package. Once added to the code, we can call this function and pass in ant wave, and it 
will give us the Fourier Transform.  We can then import the plot package and plot the 
FFT. In just four or five lines of code, it doesn't only take the FTT, but it is plotted as 
well. Below is an example of how this can be done. 

 

 
 

NumPy is one of the main tools used in Python to perform math. Basic Python will give us basic 
addition subtraction and so on; It is NumPy that will give you access to complex arrays and 
constants such as PI. The extent of NumPy used in this program was some line spacing functions 
and PI, but the functions that NumPy offers are virtually endless. NumPy can do different 
statistics operations, binary operations, logical functions, sorting and searching functions; And 
the list continues on. In short, NumPy is ultimately a powerful tool in Python. 
 
SciPy, on the other hand has a completely different set of functions. Together, SciPy and NumPy 
can provide thousands of functions that can be used. With SciPy one can perform functions such 
as integration, linear algebra, signal processing and of course the Fourier transform. 
 

 Matplotlib is a library of 2-dimensional plotting functions that provides the ability to 
quickly visualize data from NumPy arrays, and produce publication-ready figures in a 
variety of formats. It can be used interactively from the Python command prompt, 
providing similar functionality to MATLAB or GNU Plot [Williams et al., 2011]. It can 
also be used in Python scripts, web applications servers, or in combination with several 
GUI toolkits. 

 
5.   Example 
 
Compared with NumPy there is a colossal list of things one can do with SciPy. The following 
listing is what we use SciPy for in this instance. 
 
import numpy as np 
from scipy.fftpack import fft 
import matplotlib.pyplot as plt 
N = 600 
T = 1.0/800.0 
x = np.linspace(0.0, N*T,N) 
a = np.sin(50.0 * 2.0*np.pi*x) 
b = 0.5*np.sin(80.0 * 2.0*np.pi*x) 
y = a + b 
yf = fft(y) 
Y = 2.0/N * np.abs(yf[0:N/2]) 
X = np.linspace(0.0, 1.0/(2.0*T), N/2) 
import matplotlib.pyplot as plt 
plt.plot(x,y) 
plt.grid() 
plt.show() 
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When we import a package, the key word to use this package is the name of the package itself. 
When importing NumPy, we would need to use the keyword “numpy” every time you wanted to 
use this package. To shorten how much you actually type you can name the package when you 
import it. The import statement in the code snippet previously stated begins with the line “import 
numpy as np”. The ‘np’ can be any name and can be abbreviated. For example instead of writing 
“numpy.sin” to use sine function, we can simply write “np.sin”. 
 
Highly efficient algorithms for computing the DFT were first developed in the 1960s. 
Collectively known as Fast Fourier Transforms (FFTs), they all rely upon the fact that the 
standard DFT involves redundant calculation. Suppose we have a signal with N sample values, 
where N is an integer power of 2. We first separate x[n] into two subsequences, each with N/2 
samples. The first subsequence consists of even number points in x[n], and the second consists of 
odd number points - writing n = 2k, when n is even, and n = 2k + 1 when n is odd.  We can thus 
express the original N-point DSP in terms of two N/2 point DFTs. Now we can take the 
decomposition further by breaking each N/2- point subsequence down into two shorter, N/4- 
point subsequences. The process can continue until, in the limit, we are left with a series of 2- 
point subsequences, both of which require a very simple 2-point DFT. A complete 
decomposition of this type brings light to one of the commonly used radix-2, decimation in time, 
FFT algorithms.1 

 
The code previously stated as an example starts off by importing the necessary packages to run 
this program. We then set N to a value of 600 and T to a value of 1.800. These are just constants 
used to set an endpoint and spacing for the time domain on the graph. This is also used to set “x” 
when creating the initial signal. We will demonstrate by using two separate signals and adding 
them together to better see the FFT in action. These two signals are actually random signals. One 
of the signals is half the size of the other, henceforth there will not be one continuous sine wave 
throughout the entire time. Any single wave can be composed of any number of other harmonic 
components. This is the reason we take the FFT of a signal. When we see a signal in the time 
domain, we cannot tell how many different individual signals are present. When we switch it to 
the frequency domain, it is evident how many waves are truly present. After taking the FFT of 
the signal, we find its absolute value. We then create a new variable ‘x’ because the indices of 
two variables have to be the same when graphing in Python. We plot the graph of the signal 
using the Matplotlib package. 
 
The advantage of using this built-in function is that it will give a student a better understanding 
of the FFT itself. This would be a good demonstration to have the students perform before 
delving too deeply into the computations to show what is actually going on and why we use the 
FFT. This method does not need any powerful algorithm or advanced knowledge of the Python 
programming. This can serve as a stepping stone to introduce students to the usefulness of 
programming as well as a basic understanding of the FFT. The student would then be ready to 
develop and enhance powerful and fast algorithms for other engineering and scientific 
applications. 
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Figure 1. The plot of the signal in time domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The FFT of the signal. 
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Plotting the function is the easiest part. Using numpy.linespace creates an array of numbers. This 
takes three parameters when initiated. The first is the starting number, the second is the spacing 
between the numbers and the third is the ending number. Here we go from 0.0 to N with a 
spacing of N*T. This will give us our traditional x-axis. Your y-axis will be the function that you 
want to graph; in this case we want to plot the FFT. When we call the FFT function, we set the 
value that it returns to the variable y. This variable has hundreds if not thousands of numbers that 
will make up the curve. We import the necessary library that is matplotlib.pyplot as plt and call 
the plot function and pass on x and y variables. The way pyplot works is that, once plotted, it will 
not automatically appear on the screen. We must call the function plt.show() in order to show the 
plot when the program is executed. 
 
For novice programmers, this is the probably the easiest way to compute FFT using Python. We 
will now demonstrate another computing technique which is a bit tedious and requires coding, 
but one can delegate how the code will run. 
Given below is an example of the instructor-led program which the student design enhanced, 
compiled and displayed the output. The intent of this program is to show how general Python 
workhorse discrete Fourier Transform and other control theory methods 5 can be introduced at 
the earliest stage to engineering technology students in conjunction with the tools and concepts 
that will further reinforce in future DSP courses. 
 
The following listing is the code for computing FFT. 
 
import numpy as np 
import matplotlib.pyplot as plt 
def discreteFT(fdata, N,fwd): 

X=[0]*(2*N) 
omega=0.0 
k, ki, kr, n = 0,0,0,0 
if(fwd): 

omega = 2.0*np.pi/N 
else:  

omega = -2.0*np.pi/n 
for k in range(0,N): 

kr = 2*k 
ki = 2*k+1 
X[kr]=0.0 
X[ki]=0.0 
for n in range(0,N): 

X[kr] += 
fdata[2*n]*np.cos(omega*n*k)+fdata[2*n+1]*np.sin(omega*n*k) 

X[ki] += 
fdata[2*n]*np.sin(omega*n*k)+fdata[2*n+1]*np.cos(omega*n*k) 

if(fwd): 
for k in range(0,N): 

X[2*k]/=N 
X[2*k+1] /= N 

return X 
 
def fastFFT(fdata, N, fwd): 
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omega, tempr, tempi, fscale= 0.0,0.0,0.0,0.0 
xtemp,cosine,sine,xr,xi=0.0,0.0,0.0,0.0,0.0 
i,j,k,n,m,M=0,0,0,0,0,0 

 
for i in range(0,N-1): 

if(i<j): 
tempr = fdata[2*i] tempi 
= fdata[2*i+1] fdata[2*i] 
= fdata[2*j] 
fdata[2*i+1]=fdata[2*j+1] 
fdata[2*j]=tempr 
fdata[2*j+1]=tempi 

k = N/2 
while(k <= j): 

j -=k 
k >>=1 

j+=k 
 

if(fwd): 
fscale = 1.0 

else:  
fscale = -1.0 

 

M = 2 
while(M<2*N): 

omega = fscale*2.0*np.pi/M 
sin = np.sin(omega) 
cos = np.cos(omega)-1.0 
xr = 1.0 
xi = 0.0 
for m in range(0,M-1,2): 

for i in range(m,2*N,M*2): 
j = i+m 
tempr = xr*fdata[j]-xi*fdata[j+1] 
tempi = xr*fdata[j+1]+xi*fdata[j] 
fdata[j]=fdata[i]-tempr 
fdata[j+1]=fdata[i+1]-tempi 
fdata[i]+=tempr 
fdata[i+1]+=tempi 

xtemp = xr 
xr = xr + xr*cos - xi*sin 
xi = xi+xtemp*sin+xi*cos 

M*=2 
if(fwd): 

for k in range(0,N): 
fdata[2*k]/=N 
fdata[2*k+1]/=N 

 
def mainDFT(): 

N = 64 
T = 2.0 
b = True 
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fdata=[0]*(2*N) 
for i in range(0,N): 

fdata[2*i] = np.cos(4.0*np.pi*i*T/N) 
fdata[2*i+1] = 0.0 

Y=discreteFT(fdata,N,b) 
 

X = np.linspace(0.0,1.0/(2.0*T),N/2) 
yf = 2.0/N * np.abs(Y[0:N/2]) 

 
plt.plot(X,yf) 
plt.grid() 
plt.show() 

 

 
def mainFFT(): 

N = 64 
T = 1.0 
tn,fk = 0.0,0.0 
fdata = [0]*(2*N) 

for i in range(0,N): 
fdata[2*i] = 

np.cos(8.0*np.pi*i*T/N)+3*np.cos(14.0*np.pi*i*T/N)+ 
2*np.cos(32.0*np.pi*i*T/N) 

fdata[2*i+1]=0.0 
 

y = discreteFT(fdata,N,True) 
fdata = (fdata[0:N]) 
y = (y[0:N]) 
x = np.linspace(0.0,1.0/(2.0*T),N) 
plt.plot(x,y) 
plt.grid() 
plt.show() 

mainFFT () 
 

 
 

The first output is shown in Figure 3. Because there are three signals that make up one signal, the 
wave looks a lot busier. 
 
Next, we will show what this signal is like in the time domain to see each signal. In this example 
our signal comprises of three separate component waves so we get three spikes in our graph as 
seen in Figure 4. 
 
There are two separate functions in this program: the DFT (Discrete Fourier Transform) and the 
FFT (Fast Fourier Transform). These are two different methods that essentially perform the same 
operation but use completely different algorithms to do so. The DFT algorithm is highly efficient 
and can perform computations at a much expeditiously than the traditional FFT can. This rate in 
speed is seen mostly when a very large amount of data, in the thousands or millions, that needs to 
be processed. With the small amount of data points shown in this program, there isn’t a 
noticeable difference in the speed. 
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Figure 3. The signal before FFT taken in time domain 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The FFT of the signal 
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6.   Progressive Learning by Doing 
 
Since programming with Python is straightforward, a useful supplement for this module is to 
have students implement some of the following applications after they are presented with the 
basics of FFT and DFT Python programming. The ability of students to transition into some of 
these numerous applications was an impetus for this paper. 

 Network Socket Programming using Python 
 Solving ODEs using Python 
 Solving PDEs using Python 
 Image Processing using Python 

 
7.   Results 
 
To date, we have used this DFT, FFT Python education module for two different purposes. One 
was to teach basic Python programming to high school students; the other was to teach digital 
signal processing basics to burgeoning sophomores in the engineering technology program 
before they have even taken the DSP course in their junior year and work on their capstone 
senior project. In both cases, the delivery was well received and the students were able to 
understand most of the basic concepts within a very limited time. 
 
8.   Conclusions 
 
Ultimately the hardware and software laboratory material developed in this paper was developed 
by students for students. With basic knowledge on how FFT’s and DFT’s can be computed as 
well as of the Python language; there should be no problem in writing these algorithms. 
This paper presented a FFT, DFT teaching beginning module that is still evolving. It is expected 
to become a strategically integrated module that promotes visualization, intuitive explanation, 
and learning by doing pedagogical methods for future Python applications in scientific 
computing, nanotechnology, engineering and other emerging disciplines. 
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