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Abstract 

 

Mathematics is the descriptive language of engineering while physics provides the foundation for 

engineering. At many engineering institutions, mathematics and physics are frequently taught by 

departments other than the engineering department. This tradition often has the result that 

undergraduate students experience considerable difficulty in applying their mathematics skills in 

physics and engineering. Additionally, students infrequently learn the relevance and significance 

of several of the common fundamental mathematical relationships that underscore all technical 

fields of study. 

 

Two of the many important results from mathematics that are essential for all technically 

oriented students are Taylor’s theorem and Fourier analysis. A working knowledge of the 

implications and consequences of these theorems serves as a unifying theme that underscores 

many aspects of the foundation of engineering. Students skilled in the use of these theorems 

develop deeper insights into many different fields of study and are able to quickly comprehend 

fundamental concepts in many seemingly unrelated technologies. 

 

The implications and application of Taylor’s theorem and Fourier analysis as foundational 

concepts has been successfully incorporated into several engineering and physics courses. In this 

paper the fundamental importance of these two theorems is discussed. A method that has been 

used to incorporate fundamental concepts into existing courses is reviewed. And finally, the 

foundation for a new course based on this approach, titled “Introduction to the Physics of 

Engineering,” is discussed. 

 

Introduction 

 

Students typically begin taking core undergraduate science and technology classes during their 

junior and senior years. By this time, the students have usually taken the prerequisite 

mathematics and physics. A typical mathematics curriculum for physics and engineering students 

usually includes calculus, differential equations, linear algebra, multivariable calculus, and 

occasionally complex variables. The introductory physics curriculum usually includes general 

calculus-based-physics with an introduction to classical and modern physics. Based on 

observations made at several institutions, the unfortunate reality is that even students who have 

excelled in these introductory classes often have difficulty in applying the basic principles to 
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upper level science and technology courses. This observed deficiency can be partially attributed 

to the slow maturation process that often accompanies the process of developing a command of 

any field of study. However, another important source of this deficiency is the lack of 

understanding, attention to, or appreciation by the students of the general underlying concepts 

that unify all scientific fields of study. This deficiency is starting to be addressed by several 

institutions
1, 2

. However, a significant amount of planning and intradepartmental coordination is 

required to affectively achieve a complete integration of the appropriate knowledge. 

Furthermore, the ability of these integrated approaches to adapt-to-change remains to be seen. 

Discrete modules that can be integrated into existing courses or new curriculum that focuses on 

the desired level of concept integration, such as the subsequent course proposal, may serve as an 

attractive alternative in many instances. 

 

One method of visualizing the general dependence of engineering on physics and mathematics is 

illustrated in figure 1. In general, physics provides the theoretical foundation for all engineering 

fields of study while mathematics serves as the descriptive language of engineering. Although 

there are many possible methods of integrating the general unifying concepts that underlie all 

engineering fields of study, as illustrated in the figure, two of the many possible fundamental 

mathematical ‘pillars’ of engineering are Fourier analysis and Taylor’s theorem. Both Fourier 

analysis and Taylor’s theorem have an intrinsic beauty that is worth studying and both play a 

fundamental role in all fields of science and technology. 

 

 
 

Figure 1. Theoretical foundation of engineering 

 

Brief Review 

 

Taylor’s Theorem often does not receive the emphasis that it truly deserves. However, this 

theorem underlies many important aspects of engineering and science in general. Taylor’s 

Theorem can be represented as
3

)(
!

))((
...

!2

))((
))(()()(

)(2)2(
)1(

xR
m

axafaxaf
axafafxf m

mm

-
/

--
/

-/-?   (1) 

        

Proceedings of the 2004 American Society of Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

P
age 9.114.2



where Rm(x) is the remainder of the truncated Taylor series and f
 (n)

 represents the n
th

 derivative 

of the function f. In the limit as m › ¢, Rm(x) › 0. Rm(x) allows the error in approximating f(x) 

by a finite series to be bounded. Rm(x) is given by 
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where ¿f 
(m+1)

(x)¿< Q for ¿x-a¿< d. Taylor’s theorem can also be generalized for multivariable 

functions
4
. 

 

Taylor’s theorem has several practical implications. First of all, a reasonable function can be 

approximated to arbitrary accuracy by a finite polynomial series. Thus the concept of a 

polynomial orthogonal-basis-set (e.g. Legendre functions) can be associated with a Taylor 

polynomial. Furthermore, via Rm(x), the error in this approximation can be bounded. Thus Rm(x) 

is also useful for estimating errors in many practical situations. In most cases, the series is 

truncated after the linear term, f
(1)

(a)(x-a). Hence one of the more important implications of 

Taylor’s theorem is that if ｡x-a｡ is small enough and if the first derivative of f  ” 0, then 

variations in the function about x = a can be linearized. This permits the application of the 

immense power of linear algebra to problems that are not intrinsically linear. Another 

implication of Taylor’s theorem is that to first order, relative changes in a function are always 

linear if f
(1)

 ” 0. Taylor’s theorem also paves the way for the discretization of differential 

equations. With the modern PC and software this opens up a host of applications that were 

unavailable several years ago. Finally, Taylor’s theorem also provides the foundation for at least 

one method of teaching calculus or calculus-based physics
5
.  

 

The ubiquitous Fourier Transform (FT) and its cousin, the Fourier Series (FS), provide the 

foundation for an incredibly diverse range of subjects and applications. An understanding of both 

the FT and the FS is essential to a solid foundation in physics and engineering. The FT pair 

(FTP) can be expressed in several equivalent forms. The one-dimensional symmetric FTP can be 

expressed as
6
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F(fx) is the FT of the spatial function f(x). The complex form of the FS is given as  
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where f(x) is periodic with spatial period P. In addition, equations 3 through 5 can be expressed 

in terms of time instead of the spatial variable x. These equations can also be extended to higher 

dimensions. 

 

The implications of Fourier analysis are far reaching and the following brief discussion is by no 

means exhaustive. Historically the FS was developed to solve the heat-flow partial differential 

equation
7
. This naturally led to the development of using the FS (and subsequently the FT) as a 

means of solving differential equations. The remarkable discovery that periodic functions could 

be used to analyze non-periodic phenomena was initially very controversial but subsequently the 

approach was placed on a very solid mathematical foundation
8
. Later developments by many 

prominent researchers paved the way for such concepts as reciprocal spaces, orthogonal 
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functions, alternative representations, and many additional integral transforms; e.g. the Wigner 

Transform. Even today, this field of study continues to develop. Hence an understanding of the 

basic concepts of Fourier analysis cannot be over emphasized.  

 

Applications 

 

Many practical examples exist for demonstrating the usefulness of Taylor’s Theorem and Fourier 

analysis. Physical insights can be obtained from practical applications of these concepts. In this 

section several illustrative examples are given which demonstrate the power of applying Taylor’s 

theorem and Fourier analysis. Many of these examples have been incorporated into the type of 

modules that are described later and should reinforce the importance of integrating and applying 

these concepts in the undergraduate engineering and science curriculums. 

 

Example Applications of Taylor’s Theorem in Physics and Engineering 

 

Perhaps the most common example of a practical application of Taylor’s theorem is found in the 

approximation, where for ｡x｡ sufficiently small, 

xxx …… )tan()sin(   .         (6) 

This approximation occurs in optics, periodic motion, communication theory, Fourier analysis, 

and quantum mechanics (to name a few) and results in the linearization of several intrinsically 

non-linear phenomena. For example, geometric optics is based on this approximation. In 

physical optics, the image plane of an imaging system is often divided into spatial regions where 

the system is approximately linear; i.e. space-invariant. Such regions are termed isoplanatic 

patches
9
. These applications follow as an immediate consequence of Taylor’s theorem. Each of 

these areas-of-study has associated equations that describe the general phenomena and 

simplifications that result when the systems are linearized. Several common functions are also 

readily approximated using Taylor’s theorem. For example,  
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The error in these approximations can be bounded via equation 2. Mental approximations can be 

performed using approximations of the kind noted in equation 7. Integrals can be approximated 

with the judicious application of Taylor’s theorem as well as asymptotic forms developed for 

complicated functions. Hence Taylor’s theorem is useful in many situations where an 

approximation is needed or desired.   

  

The incremental form of Taylor’s theorem where h = (x-a) can be obtained by manipulating 

equation 1 with the result 
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In this form, Taylor’s theorem can help students learn to think in a differential sense. Truncating 

this series after the linear term and rearranging results in the discrete form of the first derivative. 

Generalizing this result to higher-order and partial derivatives is the heart of the finite-difference 

method for solving partial differential equations
10

 as well as the Runge-Kutta method of 

numerically solving differential equations
11

. The incremental form of Taylor’s Theorem is also 
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the starting point for many root finding algorithms with one of the most common being 

Newton’s method 
11

. 

 

Another common example of the linearization of an intrinsically non-linear system is found in 

electronics. The analysis of many analog circuits is routinely separated into a DC (Direct 

Current) analysis followed by a small-signal AC (Alternating Current) analysis
12

. The details of 

this process are readily determined by inspecting equation 8. For example, if Iout(t) represents the 

circuit response to an input voltage Vin(t) = VDC + Vssin(yt) where I(t) = f(Vin(t)), then the output 

response of the circuit can be approximated as Iout,DC + Issin(yt)‚f
(1)

(VDC).  Iout,DC and 

Issin(yt)‚f
(1)

(VDC) respectively correspond to f(x) and h‚f
(1)

(x). The results of this reduction are 

the linearization of the circuit output response, segmentation of circuit analysis into manageable 

parts (i.e. separate DC and AC analysis), and the corresponding simplification of the analysis. 

 

Finally, there has been considerable discussion on various methods of teaching calculus and 

introducing calculus into the physics curriculum. Zvonko
5
 makes a strong case for using the 

finite-difference method as a means of teaching calculus and introducing calculus into the 

introductory and intermediate physics curriculum. This approach is clearly based on Taylor’s 

theorem and readily implemented using popular software. Ortega
13

 shows several examples of 

how Taylor’s theorem is used as a tool for integrating calculus into dynamics.  

 

These examples hopefully illustrate several of the important ways in which Taylor’s Theorem 

provides an important foundation for the sciences and serve as one possible vehicle for 

integrating Taylor into the physics and engineering curriculum. 

 

Example Applications of Fourier analysis in Physics and Engineering 

 

There are many applications of Fourier analysis. Any attempt to give ‘typical’ illustrative 

examples runs the risk of trivializing the far-reaching consequences of this method. Figure 2 is 

offered in an attempt to illustrate some of the applicable areas where Fourier analysis is used. 

Clearly the impact of Fourier analysis is significant. This is why the maturation process of 

learning Fourier analysis needs to begin early in the undergraduate mathematics, engineering and 

science curriculum. 

 

Two fundamental examples of how Fourier analysis has changed our understanding of the 

universe are found in the Heisenberg uncertainty principle (HUP) and the concept of the 

frequency domain. The HUP is one of the core principles of quantum mechanics and expresses 

the concept that “uncertainties arise from the quantum structure of matter”
14

. Basically the HUP 

implies that it is fundamentally impossible to simultaneously measure the exact momentum px 

and position x of a particle. This can be expressed as 

2/@‡FF xpx  .          (9) 

The HUP arises in a natural manner from the wave-nature of matter and is a direct result of the 

FTP relationship between momentum and position. Hence what is possibly a very mysterious 

aspect of matter under any circumstance arises as a natural consequence of Fourier analysis. 

Indeed, the HUP in-and-of-itself is fundamentally a consequence of the FTP relationship 

between position and momentum space. 
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Figure 2 Application examples of Fourier analysis 

 

Another example of Fourier analysis that is closely related to the HUP is found in the Fourier 

analysis of optics
9
. The introduction and application of spatial frequency domain concepts via 
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Fourier analysis to optics, resolution, and image processing in general can be directly linked back 

to physics via Maxwell’s equations and the analogous relation between position and momentum 

in quantum mechanics. Although students rarely encounter difficulty in comprehending the 

reciprocal space relations between time and temporal frequency, the reality of analogous distance 

and spatial frequency concepts often eludes many students. Hence the application of Fourier 

analysis to spatial functions often results in a deeper appreciation and understanding of the 

transform. Optics readily provides a means of visualizing these relations. Finally, since the 

Fourier transform is a linear transform, Fourier analysis also provides an excellent format for 

reinforcing the fundamental concepts of linearity and linear algebra. 

 

Tools 

 

Many software packages exist that are useful for integrating and applying Taylor’s Theorem and 

Fourier analysis into a technical curriculum. Several of the more popular software packages 

include Matlab
®

, Mathematica
®

, and EXCEL
®

 
15, 16, 17

. A key-word web search on any of these 

software packages will lead to many additional resources. In particular, the text by Bloch
18

 is an 

example of a resource that can serve as a vehicle for helping students integrate and apply the 

foundational principles of mathematics and physics.  

 

Outline of “Introduction to the Physics of Engineering” 

 

As noted earlier, a course specifically design to address the integration of information from 

various fields of study is an alternative to integrating and coordinating the curriculum of several 

departments. The initial target groups for this class proposal are undergraduate senior-level 

physics and engineering students. Seniors will typically have completed the majority of their 

core curriculum requirements in their particular field of study as well as the associated 

mathematical requirements with the consequent expectation of appropriate technical maturity. 

The topical format for the class is based on the model illustrated in figure 1 where physics 

provides the foundation of the particular topic-module while mathematics provides the support 

for the particular application. During the course, topics will cover multiple technical disciplines 

with the intent of broadening the background of the students as well as providing insight into the 

interdependencies of multiple fields of study. Several examples of modules illustrating this 

approach follow. These examples and others have been successfully integrated into existing 

curricula.  

 

The conceptual algorithm for developing modules that reinforce fundamental concepts is 

outlined in table 1. The algorithm is generic and clearly not limited to Taylor’s theorem or 

Fourier analysis applications. Consequently this algorithm can be used to develop modules that 

illustrate the integration of fundamental concepts in almost any fields-of-study. The examples 

that follow are intended to illustrate how several of the fundamental concepts underlying the 

various technologies can be integrated into existing curricula.  The selected examples arbitrarily 

address applications found in electrical and mechanical engineering. 
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Table 1.   Module Development 

 

a.  Select an application emphasis 

b.  Develop a description of the application 

c.  Prepare data appropriate to the application 

d.  Review the underlying physics and equations of the application 

e.  Review the applicable background mathematics 

f.  Apply the mathematics to the physics underlying the application with software tools to model  

     and present the application data 

g.  Compare theory with experiment and analyze the results and implications  

 

 

 

Example 1 

a. Electrical Engineering  

b. Lumped Circuit DC and AC Analysis 

c. Ohm’ law and results from simple electrical network analysis 

d. Underlying physics 

‚ Newton’s laws 

‚ Elementary statistical mechanics 

‚ Maxwell’s equations 

‚ Linear and nonlinear system approximations with no time delays 

e. Taylor’s Theorem review; ‘Poor-man’ review of Fourier analysis via complex-variable 

phasors 

f. Reduction of equations to appropriate circuit models and small signal equations 

g. Comparison of theoretical and experimental data 

‚ Circuit analysis 

‚ Small signal diode response  

 

 

Example 2 

a. Thermal-Mechanical Engineering 

b. Heat flow 

c. Spatial dependencies of various steady-state heat flow 

d. Underlying physics 

‚ Energy conservation 

‚ Elementary thermodynamics 

‚ Heat equation 

e. Taylor’s Theorem review for finite difference solution of heat equation; Review of 

Fourier analysis solution of differential equations 

f. Reduction of heat equation to appropriate heat flow model; Laplace equation analysis 

g. Comparison of theoretical and experimental data 
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Conclusion 

 

An example representing the manner in which engineering depends on physics and mathematics 

is illustrated in figure 1. In a practical sense, Taylor’s theorem and Fourier analysis play a 

fundamental role in engineering and therefore common to all engineering disciplines. The 

application of these mathematical results enables students to appreciate and learn these relations 

as well as providing a foundation for integrating and applying physics and mathematics to 

engineering. An outline for developing instructional modules based on these concepts was 

developed along with several examples. Clearly there is always the need for improving the 

ability with which students integrate and apply their knowledge. This proposal hopefully serves 

as a useful step toward this goal. 
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