
Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Session 3120

A Theory of Programming for Engineers

Juris Reinfelds

Klipsch School of EE &CE, New Mexico State University

Introduction

A theory is a concise set of precisely defined concepts and notation-symbols that can be used to
reason about a much larger, much more complicated and less precisely defined system. A good
theory captures the essential structure of the system that we want to study and reason about.

An elegant theory is simple in concept, yet wide in scope. For example, Kepler’s theory of ellipti-
cal planetary orbits is more elegant than the epicycle theory of the same orbits. A theory is more
useful to engineers and scientists if it is expressed in terms of concepts that are already at least
partly familiar from the day-to-day work of these engineers or scientists. For example, thermody-
namic theory of molecular motions is much less effective in the derivation of the period of the
pendulum than Newton’s Laws of Motion.

Mathematicians have developed theories of computability that we now refer to as “theory of com-
puter science”, but these theories are not directly useful to practicing programmers who want to
reason about their programs, because they are based upon mathematician’s concepts such as Tur-
ing machines and lambda calculus.

The First Programmer’s Theory of Programming

Some 30 years ago Edsger W. Dijkstra 1, 2 developed a simple, yet very effective theory, which
programmers could use to reason about simple imperative single-thread programs. Earlier, Robert

Floyd 3 had introduced the notions of preconditions, postconditions and loop invariants in mathe-

matical terms and Sir Anthony Hoare FRS 4 had incorporated these concepts into a mathemati-
cally oriented, precisely defined programming language. However such a mathematical theory
was not directly useful to programmers and very little use of these concepts was made until Dijk-

stra and Peter Naur 5 expressed the theory in programmer’s terminology.

The core of Dijkstra’s theory is very simple. First he observes that a program is a sequence of
statements. Second, he observes that wherever a statement appears in a program, we can replace

P
age 7.123.1

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

that statement with a sequence of statements. Programmers use this idea all the time when they
write or edit programs. Formally, we capture this concept in Backus-Naur-Form (BNF) as

<sta> ::= <sta1> <sta2>

which reads: a sequence of statements, statement1 followed by statement2, behaves in our lan-
guage exactly like a single statement. According to this rule, a sequence of statements of any
length “is a statement”. A consequence of this rule is that it allows the formation of compund
statements, in particular, the concept of a procedure: according to this rule, we can take any
sequence of statements out of a program, place them in a procedure and replace them by a one-
statement procedure call in the program to achieve the same effect.

Here is the syntax of the core of the statements that Dijkstra’s theory considers, expressed in a ter-
minology that resembles the more familiar C-programming notation of today:

<statement> ::=
<statement1> <statement2>
<variable> = <expression>
if <conditional expression> then <statement1> else <statement2> fi
while <conditional expression> do <statement> od
skip

To describe the semantics of these statements, Dijkstra uses preconditions and postconditions.
Preconditions and postconditions are boolean expressions in the variables of the program. A state-
ment (which might be a sequence of many statements) is guaranteed to perform its task correctly
if and only if its precondition yields true. The “task of a statement” is captured in its postcondi-
tion, which becomes true when the statement completes its task. For example, if the square root
function in the statement Y := sqrt(X) works only for non-negative arguments, its precondition is
X>0 and its postcondition is X == Y*Y

A program that, at a certain point, expects the value of a key to be greater or equal than the first
value a[0] of an array and less than the last value a[N] of that array, requires a precondition

a[0] =< key < a[N]

A while statement poses two problems. First, we have to capture the semantics of the loop. That
is, we have to describe, with a boolean expression, what the state of the computation is at each
iteration of the loop. Since the statements contained in the loop body do not change during the
execution of the loop and this boolean expression does not change during the execution of the
loop, we cal it the “loop invariant”. Second, we have to make sure that each iteration of the loop
makes progress towards the completion of the loop. Otherwise the loop will run forever. The use-
fulness of Dijkstra’s theory to the construction of loops is best illustrated with an example. Let us
consider the well know algorithm of binary search. Binary search is a deceptively simple algo-
rithm that easily leads to an incorrect program if we “guess” the program in the usual way.

P
age 7.123.2

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Binary Search Problem

Given a key and an ordered array a[0] ... a[N] such that a[i] =< a[i+1] for 0 =< i < N, write a
program that sets the variable present to true if at least one array element is equal to the key. Oth-
erwise the variable present is set to false. Design a loop that takes the smallest number of itera-
tions to determine the value of present.

Ad-hoc Reasoning

Start with two variables bot:=0 and top:=N-1. In the loop, check the midpoint of the range
mid:=(bot+top) div 2 and discard the half where the key cannot be. When bot==top, then the one
remaining array element in the range is either equal to the key or the key is not equal to any array
element. This leads to one of two programs that differ only slightly

bot := 0 top := N-1 bot := 0 top := N-1
while bot < top do while bot<top do

mid := (bot + top) div 2 mid := (bot + top) div 2
if key > a[mid] if key < a[mid]

then bot := mid + 1 then top := mid - 1
else top := mid else bot := mid

fi fi
od od
present := (key == a[bot]) present := (key ==a[bot])

Only one of these programs “works”. The other one loops forever. The reader is invited to trans-
late the programs into an available programming language and find out which program does not
work and why.

Applying Dijkstra’s Theory to Binary Search

Dijkstra’s theory requires us to make sure that each iteration of the loop makes progress towards
the postcondition of the loop. In binary search, progress is made by reducing the number of array
values between bot and top, but when bot and top are adjacent indices, no progress is made
because mid equals bot or top, depending on whether integer division rounds 0.5 up or down.
Therefore let us stop the loop with the postcondition

a[bot] =< key < a[top] AND top == bot+1

so that a[bot] == key decides whether key is equal to at least one array element, but the treacher-
ous last iteration of the ad hoc loop is avoided. This postcondition suggests the loop invariant

a[bot] =< key < a[top]

and the loop condition

P
age 7.123.3

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

while top > bot+1 do ...

as well as the precondition for the loop statement of the program

a[0] =< key < a[N]

that is established by extending the array with a sentinel value a[N] that satisfies a[N] > key and
an if statement (not shown) that sets present to false and exits if key is less than a[0]. A correct
program for binary search follows immediately

bot := 0 top := N
while top > bot+1 do

mid := (bot + top) div 2
if key < a[mid]

then top := mid
else bot := mid

fi
od
present := (key == a[bot])

The Kernel Language Approach

Dijkstra’s theory is concise, elegant and useful, but since it is built around the assignment state-
ment and iterative loops, it applies only to imperative programming. A theory that includes other
programming paradigms as well as parallel, concurrent and distributed computing requires a dif-
ferent starting point.

The Mozart-Oz 6 programming system implements a new and innovative programming language
Oz that incorporates the best of functional, logical, imperative, object-oriented, parallel, concur-
rent and distributed programming into one programming language.

To show that Oz is a concise and elegantly structured programming language built on a set of

carefully selected concepts from the paradigms mentioned above, Peter Van Roy and Seif Haridi7,
introduced a concise, elegant and precisely defined Kernel Language in which we can express
every construct and feature of the full Oz programming language. The Kernel Language is a sub-
set of the Oz programming language, so that kernel language programs are executable in the
Mozart-Oz programming system.

Much as Dijkstra’s theory applied to imperative programming, the Kernel Language provides a
programmer’s theory for all the computational paradigms mentioned above. So far it has been
applied to a better understanding of Oz programming, but in key programming concepts Java is a
subset of Oz, so kernel language skills should lead to a better and deeper understanding of the pro-
gramming concepts of Java. In Spring 2002 at NMSU, a course EE 590 entitled “A Programmer’s
Theory of Programming” is in progress, testing better ways to teach multi-thread programming.

P
age 7.123.4

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

It would take at least a half-day workshop to explain the kernel language in sufficient detail to
fully appreciate its concise elegance and remarkably wide scope. In this paper, as for Dijkstra’s
theory, we will show the show the syntax and skip over the semantics of the kernel language and
we will have room for just a couple of examples on how the kernel language definition clarifies
some programming concepts that C and Java programmers find puzzling or error-prone.

The Basis of the Kernel Language

Dijkstra’s theory is built around the assignment statement and integer data values. The kernel lan-
guage has a different and wider base. Variables are declared without value or type. Strong typing
is dynamic. Variables acquire a value and with it a type in a binding operation (denoted by “=”)
that is similar to unification of logic programming.

As for final variables of Java, the values of kernel language variables cannot be changed. This
simplifies reasoning about concurrent and parallel programming. It is surprising how many prob-
lems do not need assign-many-times variables. Default use of assign-many-times variables unnec-
essarily complicates reasoning about programs that could easily be programmed with final
variables only.

Unbound variables may be used in expressions. The expressions are still strongly typed because
type compatibility is checked dynamically when such an unbound variable is bound to a value in
another thread of computation. What happens when computation of an expression reaches an
unbound variable? The rule is:

The execution of an expression suspends if it has to use a variable that is not bound
to a value. Execution of this expression resumes and continues when the unbound
variable is bound to a value in another execution thread.

This turns multithread computing into an integral and natural part of the programming language
instead of treating threads as an external, library-accessed activity as in C++ or as a complicated
language activity with special run, start and stop methods as in Java. The kernel language invokes
threads with a simple thread-statement

thread <statement> end

that executes the enclosed statement (which may be a sequence of any number of statements) in a
separate execution thread and then terminates that thread. With the execution suspension rule and
the thread-statement we can construct, study and compare synchronization mechanisms, race con-
ditions, deadlocks, producer-consumer problems and other aspects of concurrent and parallel
computations directly and in full generality. After that we can turn our attention to the implemen-
tation peculiarities of threads in Java and C++. Separation of concerns increases depth of under-
standing and decreases the effort required to master the concepts.

P
age 7.123.5

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

The Syntax of the Kernel Language of Van Roy and Haridi

<statement> ::=
skip Empty Statement
<var1> = <var2> Variable to variable binding
<var> = <value> Value to variable binding
<sta1> <sta2> Statement sequence
local <var> in <sta> end Declaration of variable
if <var> then <sta1> else <sta2> end Conditional statement
case <var> of <pattern> then <sta1> else <sta2> end Pattern matching
{ <var> <arg1> ... <argN> } Procedure call
thread <sta> end New computation thread
try <sta1> catch <var> then <sta2> end Exception handler
raise <var> end Raise exception
{NewCell <var1> <var2>} C-like Assign-Many-Times var
{Access C X} Bind X to content of C
{Assign C X} Set content of C to value of X

Basic Data Types of the Kernel Language

<value> ::= <number> | <record> | <procedure>
<number> ::= <int> | <float>
<record> ::= <literal> | <literal> “(“ <feature1> “:” <var1> ... <featureN> “:” <varN> “)”
<procedure> ::= proc “{“ “$” <arg1> ...<argN> “}” <statement> end
<literal> ::= <atom> | <bool>
<feature> ::= <literal> | <int>
<bool> ::= true | false
<pattern> ::= <record>

We often hear the statement that in some programming languages a procedure is “a first class
value”. Exactly what does this mean? The kernel language makes it clear. The statement

X = 1230

binds the integer value to the variable X and the compiler transforms the ASCII specification of
the integer to a more computer friendly binary integer form. In the same way, the statement

Cube = proc {$ X Result} Result = X*X*X end

binds the procedure value to the variable Cube, which can then be used as the name of the proce-
dure. The compiler transforms the ASCII specification of the procedure into a more computer
friendly byte-code form. Wherever we can bind or use an integer, we can also bind or use or call a
procedure. This is what is meant by “a first class value”. P

age 7.123.6

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Object Oriented Computations

A class is a data structure. It is a first class value that specifies objects and methods of that class.
An object is a data structure that encapsulates an explicit state as defined by the class of which the
object is “an instance”. Cells are used to represent state because the values referred to by cells can
be changed as many times as needed. The state encapsulated by an object can only be accessed in
a controlled way by methods, which are procedures that are defined in the class definition.

Conclusion

The binary search example showed us how a programmer’s theory of programming can help us to
create programs with prdictable behaviors. The Kernel Language allows us to study difficult pro-
gramming concepts, such as thread synchronization and race conditions directly, in their most
general forms, unconstrained by paradigm, tradition or the whims of a particular programming
language designer. The Kernel Language is a small language with precisely defined syntax and
semantics that allows us to acquire a good understanding and working knowledge of the most
important concepts of many programming paradigms in a surprisingly short time.

For the first time we have a promising programmer’s theory that spans all programming. Let us
hope that it will help us to design and implement CAPS systems that actually work predictably.

References

[1] Dijkstra, E.W., “Notes on Structured Programming”, pp. 1-82, in Dahl & Hoare & Dijkstra, Structured Program-
ming, Academic Press (1972)

[2] Dijkstra, E.W., “A Discipline of Programming”, Prentice Hall (1976)

[3] Floyd, R., “Assigning Meaning to Programs”, pp.19-32, Mathematical Aspects of Computer Science XIX, Amer-
ican Mathematical Society (1967)

[4] Hoare, C.A.R., “An Axiomatic Approach to Computer Programing”, CommACM, pp.576-580, Vol.12#10,(1969)

[5] Naur, P., “Proofs of Algorithms by General Snapshots”, BIT Vol.6 pp.310-316, (1969)

[6] www.mozart-oz.org (2002)

[7] Van Roy, P., Haridi, S., www.info.ucl.ac.be/people/PVR/book.html (2002)

Biographical Information

Juris Reinfelds received his PhD from the University of Adelaide, South Australia, in 1963. Through the University
of Edinburgh, University of Adelaide, Marshall Space Flight Center, University of Georgia, CERN in Geneva and the
University of Wollongong, he is now Professor of Computer Engineering at New Mexico State University. P

age 7.123.7

