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Abstract 

 

In this note, the classical single input single output map (transfer function) as represented in the 

frequency domain, will be equivalently described in the time domain with gain and phase 

characteristics explicitly identified. This enables the educator to represent input-output maps in a 

purely time domain perspective, and clarify the complications introduced by using the Laplace 

operator and the frequency domain when analyzing system gain and phase portraits (Bode plots). 

A simple under damped externally driven bounded input bounded output stable differential 

equation will be used in this study. Comparisons in the time and frequency domain will be 

shown with examples, and possible assets for future classroom presentations will be discussed.  

 

1. Introduction 

 

Modeling and simulation of mechanical and electrical systems (in a dynamic sense) often begin 

with a simplified low order linear model representing disturbance phenomena from a localized 

viewpoint. There is a strong correlation between understanding the vibration aspects of an open 

loop low order system (from combined electronics and the structural aspects) and the effects of 

the same system when exogenous disturbances produce unwanted effects in a controlled closed 

loop system. Some of the most elementary approaches for this type analysis involve time domain 

simulation (time response due to disturbances) and additionally frequency domain analysis using 

Bode plots and intrinsic evaluation of the spectral contents of the model.  

 

In this paper, we will consider a typical second order linear model with a forced disturbance (one 

mode of a complicated array of dynamics from an assortment of electronics and mechanics) to 

understand in a very simple format the fundamental aspects of modeling and evaluation in the 

time versus frequency domain (spectral analysis). For example, consider the following solar 

panel that is pitch controlled via a slide actuator, and wind gusts capable of disturbing the 

orientation of the panel in Figure 1. 
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Figure 1  Structural Array / Solar Panel 

 

If only local disturbance phenomena is being initially considered, then  the first bending mode 

(without any sensor or actuator dynamics being considered) can be represented in its most 

elementary linear form as follows, 

                    fxwxwx nn 
2

2                                     (1) 

where 1x are coordinates in state space representing solar panel angles (deflection) off the 

vertical axis (the symbols representing differentiation dtdxx / , etc., has been used here), f is an 

external wind gust, the pair },{ nw are assumed positive constants representing the damping ratio 

( <<1) and natural frequency (radians) of the bending mode of the solar panel.   

 

Since this presentation is focused on the analogies between the time and frequency domains, 

there are conditions on the external disturbance f that restrict the analysis based on Bode plots, 

and gain and phase margins. Since most signals can be projected onto a series of harmonic time 

domain operators, i.e., a series of sine and cosine functions (without presenting further 

mathematical details, the function resides in a Hardy space), we will assume that the function f  

is of the form )sin(2 wtwn
where w  is a selected input driving frequency in the measure of radians. 

In summary, the following time domain second order differential equation driven by various 

external harmonic driving functions will be considered throughout this paper. 

        )sin(2 22
wtwxwxwx nnn                            (2) 

When w  is the only variable in the previous equation( and nw are constants), then an output to 

input function can be described in peak to peak terms, i.e., if the input is defined as 

)sin()( 2 wtwtu n , then it obviously has a peak value of 2

nw on a time scale plot. In addition, since it 

can be shown that the solution to the output state is )sin()(  wtMtx  where M and   are 

functions of the driving frequency w , then the output state has a peak value of M and the ratio of 

output to input is exactly 2/ nwM . The phase shift between peaks from input to output is also 

paramount, and both the magnitude and phase will be clearly presented in the time domain and 

the analogous frequency domain (transfer function and Bode plots) for a full understanding  the 

analogies between the frequency and time domains. 

 

In order to present the information needed to fully understand both domains (time and frequency) 

and the effective meaning in terms of the Bode plot, the main focus of the paper has been divided 

into 5 sections. Section 2 and section 3 present the time and frequency domain solutions to the 

differential equation being considered (in that order), and discusses the implications of the  
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resulting solutions. Details of the Bode plot and its original meaning will then be presented,  

and clear comparisons will be established between the time domain perspective and 

corresponding frequency domain. Finally, section 4 provides some examples that support the 

mathematical solutions in a graphical display, and section 5 concludes this paper with some 

comments on tools for educational possibilities in the classroom environment. 

 

2. Time Domain Solution 

 

In this section, we will briefly review the general solution to the externally driven differential 

equation in (2) with assumed initial conditions 
0)0( xtx  and

0)0( xtx   , and discuss the 

portion of the solution that’s of interest in this paper.  

 

Recall from the standard mathematical format (see ref [2] for details) that a general solution 

)(tx to (2) can be described by two parts; a homogeneous solution purely derived by the initial 

conditions independent of the forcing function (i.e., setting the forcing function )sin()( 2 wtwtu n  to 

zero), and a particular solution that satisfies (2) by assuming the given forcing function is known 

(i.e., 0)( tu  ). In fact, since the differential equation is locally Lipschitz (see [2], in essence the 

derivative is bounded), the solution is also unique. For convenience, we will use the 

constant 21  nd ww , where the constant under the radical is real due to the assumption that 

 is positive and less than unity. In this format, the homogeneous solution is of the form 

          ))sin()cos(()(
)(

twDtwCetx dd

tw

h
n 

                         (3) 

where the constants )0(xC  and 
dn wxwxD /))0()0((    are determined from the substitution of the 

initial conditions on the state )(tx and the derivative )(tx at time 0t . In addition, the particular 

solution is the superposition of the cosine and sine functions (to account for phase) with 

constants A and B as follows, 

          






















)sin(/

)cos(/

))sin()cos(()(

22

22

22

wtBAB

wtBAA
BA

wtBwtAtxp

                          (4) 

with A and B described as follows,          

))2()/((2 22223 wwwwwwA nnn   ))2()/(()( 2222222 wwwwwwwB nnnn  . 

Finally, setting  
2222 /)cos(,/)sin( BABBAA    

we obtain  

 )sin()( 22  wtBAtxp
.                       (5) 

An explicit formula for   is given by ))/(2(tan 221 wwww nn    , and the leading peak value 

coefficient can be explicitly expressed as 

                      
2222

2
22

)2()( nn

n

wwww

w
BA




.                        (6) 
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Note that the frequency at which the particular solution is given consists of the same driving 

frequency w in the external forcing function (this is not a surprise since the solution should be 

periodic and of the same frequency as the driving function). Finally, by superposition of both  

components )(txh
 and )(tx p

, we have obtained the complete solution )(tx , i.e., 

)()()( txtxtx ph  due to initial conditions and the external driving function.  

             

To conclude this section, notice that if viewing )(tx  as t , the homogeneous portion of the 

solution vanishes (due to the A matrix being Hurwitz [3]), and we obtain 

)()(lim txtx p
t




. 

The particular solution (or the steady state response as time progresses towards infinity) is the 

solution of interest in this paper. In the next section, the Laplace operator will be used to obtain 

the frequency domain input-output map, and finally both the time and frequency domain 

solutions will both be compared descriptively, and how they relate using the Bode plot (and 

disregarding initial conditions on the state). 

 

3. Frequency Domain Solution 

 

To compare the solution of (2) in the frequency domain, the Laplace operator (denoted L ) can be 

applied to both sides of the differential equation in (??) (and disregarding any terms associated 

with initial conditions at time zero, i.e., 0t ), we obtain   

)())sin(()2()()( 22
sUwtwLxwxwxLsXsG nnn    and appropriate substitution (s=wj) we have the gain 

and phase functions 

                 
2222

2

)2()(
|)(|

nn

n

wwww

w
jwG




                            (7) 

                   ))/()2((tan 221 wwww nn     

Notice these functions are the same as the time domain solutions obtained in section 2. In 

essence, we have provided identical gain and phase functions when considering input to output 

mapping from two different perspectives, all as a function of w . Since the actual Bode magnitude 

function is determined from taking the log and multiplying by a constant (20 log(|G(jw)|), the 

function in (xx) can be easily converted by a simple evaluation on a log scale. 

 

4. Time / Frequency Domain Correlations 

 

In this section, the driving sinusoidal function and the output position component of the second 

order system (as given in (2)) will both be plotted for multiple assigned values of w , and gain and 

phase will be carefully defined in display format to further support our understanding of the 

transfer function from a time domain perspective (plots will be provided on a log scale in the 

time domain for consistency with the scale used on Bode plots). 

 

Since both   and nw are constants throughout this paper, we will conveniently choose  
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2/3 and 2nw  (which results in a damped natural frequency of cycles per second) for 

display of an explicit solution for any given forcing function )sin()( 2 wtwtu n  with a set of solutions 

considered due to a span of the forcing frequency w .  

Since we want to ultimately consider a span of external driving frequencies w for our 

comparative study, the analytical solution for one point at w radians per second has been 

conveniently chosen in order to provide the transfer function value (one point on the Bode plot, 

gain and phase) as a simple example for clarity. Insertion of these numbers into (2), we have the 

following externally driven second order system, 

)sin(4432 22 txxx    .                          (8) 

For this system, the driving function and position have been derived and given explicitly as 

functions of time, 

 )sin()21/4()(),sin(4)( 2   ttxttf p
.                          (9) 

A more convenient way to look at the dynamical system in (8) is by normalizing the forcing 

function to obtain 

           )sin()4/()32( 2 txxx                          (10) 

and the resulting newly defined forcing function and position, f   , and 
px , respectively, are 

expressed as 

     )sin()21/4()(),sin()(   ttxttf p
.                           (11) 

From the equations in (10), we can conveniently express the input-output relationship in time 

(effectively, the Bode equivalent) by finding the maximum of the output signal 
px at any given 

time, divided by the maximum of the input signal f  , independent of any particular time point in 

either sequence.  The resulting gain (denoted by Mag as a function of w ) and phase in units of 

decibels and degrees, respectively, for the point chosen (i.e., w ) is  

72.2)1/)21/4log((*20)( Mag                      (12) 
11.49))3/(2(tan 1    

A sequence of points have been selected for evaluating the magnitude and phase, and listed for 

varying w  in the set ]30,[  at 5 intervals as listed in the following Table 1. 

               Table 1  Gain-Phase Versus Frequency 

 

   w 

(rad’s) 

Magnitude 

(db) 

Phase 

(degs) 

pi -2.72 -49.11 

5 pi -38.35 -140.48 

10 pi -64.79 -160.16 

15 pi -80.78 -166.77 

20 pi -92.20 -170.08 

25 pi -101.10 -172.06 

30 pi -108.40 -173.38 
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For comparative purposes, a Bode plot has been constructed using the Mathworks© software for 

magnitude and phase (constructed based on the Laplace transform setting), and the numbers in 

Table 1 are consistent with the plots in figure 1 for the selected frequencies. 
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              Figure 1  Bode Plot 

 

This concludes our comparative discussion of the time and frequency domain functions and their 

corresponding Bode plot, with a simple second order system used for the analytical 

computations. We will conclude this paper with some thoughts about possible improved 

educational alternatives, when the frequency domain is present in the discussion (Laplace 

transforms and the Bode plot). 

 

5. Conclusions 
 

A time based equivalent development for describing the transfer function and Bode plot has been 

provided. The analysis was based purely on a stable system, and the technique emphasized the 

gain and phase portion in the time domain, and its’ effective equivalent in the frequency domain. 

This has the potential for giving the instructor another method for describing transfer functions 

and their original intent, before introducing the more complicated tools used in the frequency 

domain (Bode plots, Nyquist plots, etc.).  
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