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Abstract 

 

 Probability and Statistics is a pervasive topic in many careers. Engineers, medical 

professionals, and other specialists use Statistics to analyze data and determine courses of action. 

People utilize the basic concepts of probability to make decisions in their everyday lives. Despite 

this, many students struggle with Probability and Statistics in classroom settings. The equations 

and mathematics can be overwhelming or frustrating, partially because lessons are not visual or 

intuitive enough and are often missing the connection to daily, real-world experiences. 

 

 This paper focuses on a visual, intuitive, example-based, and engaging approach to 

teaching a specific Probability and Statistics concept, namely the normal distribution. The point 

of this approach is to provide students with easy to understand examples that translate bookwork 

to real life and help in comprehension of the material. This more intuitive understanding allows 

them to be more successful when introduced to equations and calculations associated with the 

topic. To teach this concept, the paper shares supplemental materials that can be introduced 

during class instruction prior to delving into mathematical details. The paper introduces this 

concept using (1) Examples, such as a Galton Board and flipping coins, (2) Visualizing basic 

concepts and some key concepts, (3) Real-life, experience-based examples such as height 

distribution, (4) A puzzle involving a multiple-choice exam, and (5) An in-class experiment of 

rolling a die.  

 

 It should be noted that this paper is a work in progress. In addition, this method of 

teaching is meant to be supplemental and not to replace existing textbooks or other teaching and 

learning methodologies. The work in this paper has been presented to 21 students in a Probability 

and Statistics classroom setting. Following the presentation, it has been assessed and received 

very positive feedback. This visual, intuitive, and engaging approach to teaching and learning 

has also been tested in the past for topics in Statics (explaining center of gravity), Calculus 

(explaining integration and explaining derivation by chain, product, and quotient rules), 

Differential Equations, Control Systems, Digital Signal Processing, Newton’s Laws of Motion, 

and Computer Algorithms. In all of these cases, students commended the approach and found it 

to be very effective for learning. 
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I. Introduction 

 

 Most Statistics textbooks are loaded with mathematical formulas and explanations with 

little focus on conceptual understanding. This is of course a great approach to mathematically 

introduce the material since it is written in a precise manner, but at the same time students may 

become frustrated as they do not intuitively grab some of concepts, and miss the “aha” moment.     

Therefore, instructors must modify their teaching approach to first introduce the concept in a 

clear, easy to understand way, and only later delve into the textbook math.  

 

 Many books have been written on the subject of Probability and Statistics. Most 

textbooks, for example [1], generally jump straight into the mathematics. Other books, though 

usually not textbooks, try to introduce Statistics in a visual way. For example, [2] uses comics as 

an approach to teaching the subject, which helps visual students understand the basic ideas, and 

[3] gives several visual examples from real life while clearly explaining mathematics to general 

audiences. [4] and [5] also focus on explaining the topic to a more general audience, trying to 

make Statistics fun for the layman. A few professors have understood the need for explaining 

Statistics differently, and came up with some alternative approaches: for example, [6] includes 

many tricks and hands-on activities for students. Books like [7] explain the concepts in a 

textbook-like manner. Others, for example [8] and [9], try to build up the reader’s intuition 

through real life examples. 

 

 These books are useful supplements, but if students miss concepts it is often hard to 

readjust their thinking and alleviate their frustrations. The result of this is that students often 

struggle with, or completely miss, a basic understanding of concepts, and don’t get the “Aha!” 

moment that makes things click. 

 

 The focus of this paper is to provide a set of supplementary material that can help 

instructors to teach, and students to comprehend, a specific Probability and Statistics concept, 

namely the normal distribution. By introducing this concept in visual, intuitive, and engaging 

ways, the material becomes more meaningful for the student, particularly when they can relate it 

to real-life. 

 

 This paper starts with intuitive, experience-based examples to introduce the concept, such 

as the Galton Board and coin flips, followed by introducing key concepts, such as an answer to 

the simple question, “What does a bell curve mean?” It then provides real-life examples of the 

normal distribution, such as height distribution of classmates. Finally, it ends with a puzzle and 

an in-class experiment that can engage students in a classroom setting. 

 

 The work in this paper has been presented to 21 students in a Probability and Statistics 

classroom setting. Following the presentation, its effectiveness was assessed and received very 

positive feedback, which is shown in detail in Appendix A. 

 

 

 

 



II. Some Intuitive, Experience-Based Examples 

 

This section describes three real-life examples that can be used to introduce the basic idea 

behind the normal distribution. These are the Galton Board, flipping coins, and driving in a city.  

 

A. The Galton Board 

 

The Galton Board (Figure 1), also known as a bean machine or quincunx, distributes 

marbles between vertical compartments. If you were to drop a marble into the Galton Board like 

the one below, the marble could end up in any of several vertical columns. The specific outcome 

for any single marble cannot be accurately predicted. As more marbles are dropped into the 

board from the top, they will end up in different columns with varying frequencies: most will end 

up around the center, and less will end up in the far right and left columns (outliers). Given that 

many marbles are dropped, the stacks will assume a bell shape. A note: it can be shown that this 

bell shape approximates the normal distribution. Why is this so? 

 

 
Figure 1: Galton Board 

 

A marble entering the Galton board initially has only one path to follow (Figure 2), and 

the marble drops directly on top of the top peg. From there it can continue in one of 2 equally 

likely ways: to the left or to the right. Each path has a 50% chance of occurrence (Figure 3).  

 

 
Figure 2: Galton Board with only one possible path  



 

 

Figure 3: Galton Board with only the top peg considered 

 

We now consider the second row. Again, each marble that hits a peg can continue either 

to the left or the right (where each outcome is equally likely). Given that there is a 50% chance 

for a marble to get to any given peg on the second row, there is therefore a 25% chance for a 

marble to fall to either side of the next level peg. We therefore have four possible outcomes, each 

with a 25% chance of occurring, but two of these outcomes (right then left, and left then right) 

take the marble to the same place! Therefore, the outside destinations have one possible chance 

of occurring whereas the middle destination has two possible chances of occurring. Thus, when 

we consider the marble’s destination and not the path taken, a single marble has a 25% chance to 

be on the left, a 25% chance to be on the right, and a 50% chance to be in the middle, as shown 

in Figure 4. 

 

Figure 4: Galton Board with the first two rows of pegs considered.  

The figure on the left shows the number of possibilities for reaching a given location on the 

board, and the figure on the right shows the probability of each outcome 

 

 When asking the question: “In how many different ways can a marble get to a certain 

level on the Galton Board?” we find that each level has twice as many possible paths as the 

previous level. That is, there are twice as many ways to get to a given level than to get to the 

previous level. This is clear in Figure 5, where the number of paths are 1, 2, 4, and 8. This is 

because at any peg a marble can continue to the left or the right. Note that at any level the marble 



is 100% sure (a “sure event”) to reach the next level of the Galton Board at some position 

(Figure 6). 

 

 
Figure 5: Possible paths at the first few levels 

 

Figure 6: Galton Board with the first three rows of pegs considered 

 

As a marble makes its way to lower levels, it encounters rows with more pegs, and the 

probability of the marble ending up at (or near) the center column becomes higher compared to 

the extreme left and right columns, as shown in Figure 7. 



 
Figure 7: Possible paths for the first few rows of the Galton Board 

 

 If we count the number of possibilities for getting to a specific point, we get a chart as 

shown in Figure 8. This theoretically infinitely long chart is known as Pascal’s Triangle, and is 

discussed in Appendix B. 

 
Figure 8: The number of possibilities for each row of pegs 

 



 Note that each number is the sum of the two numbers above it. For example, (referring to 

figure 9) 4+6=10. This means that if there are 4 possible paths for a marble to arrive at the top 

left peg and 6 possible paths to arrive at the top right peg, then the peg below and between these 

two pegs has 10 possible paths in which a marble can arrive. 

 
Figure 9: Each number in Pascal’s Triangle is the sum of the numbers above it. 

 

 As we continue adding more rows of pegs, we can plot the probabilities of a marble’s 

arrival at a given point on the Galton Board (Figure 10, left). As more rows are considered, the 

probability chart approaches a bell shape (Figure 10). As mentioned earlier, this bell shape, for 

large enough experiments, approaches the normal distribution. 

  

 
Figure 10: As more rows of pegs are added, the probability pattern assumes a bell shape  

 

 For example, let us consider the row of the Galton Board with 9 pegs (the bottom row). 

The probabilities are shown in Figure 11. 



 

 
Figure 11: Probabilities shown for the first 9 rows of pegs in a Galton Board. 

 

 If we plot the probabilities for the bottom row, we get the graph shown in Figure 12. Note 

that the sum of all probabilities for this row, like all other rows, is equal to 1. That is to say, it is 

a sure event that a marble will reach that level (or any other). 

 
Figure 12: Probabilities shown for the 9th row of pegs in a Galton Board. 

 

If we connect the points on the graph, we get the graph shown in Figure 13. We can use 

this to approximate a bell-shaped graph, as shown in Figure 14. 

 



 
Figure 13: Connecting the previous graph with straight lines from point to point. 

 

 
Figure 14: Approximating the probabilities for different points with a continuous curve. This 

graph forms a bell-shape 

 

 Note the difference in graph shapes between Figure 14 and Figure 10. Figure 14 looks 

much more like a bell curve than the curves in Figure 10. As the number of rows of pegs in a 



Galton Board increases, the graph assumes a shape of a bell, as shown in Figures 15 and 16. As 

mentioned earlier this bell shape graph approximates the normal distribution.   

 
Figure 15: A graph with discrete probability values representing probabilities for the 37th row of 

a Galton Board 

 
Figure 16: The graph from Figure 15 with an overlaid bell-shaped curve. 

 

B. Coin Flips 

 

Many people use a coin flip to make a decision. Assuming that coins are fair, i.e., there is 

the same probability (1/2) for a “head” as for a “tail.” Since a coin flip only has two possible 

outcomes, it is known as “binomial.” Figures 17 and 18 show the probabilities for one coin flip.  



 
Figure 17: Possible outcomes for a single coin flip. 

 

 
Figure 18: Probabilities of one coin flip 

  

We can analyze the outcomes for two coin flips, like in Figures 19 below. It is important 

to note that each coin flip is independent of every other coin flip, and thus the outcome of the 

first flip does not affect the second. 

 

 
Figure 19: Possible outcomes for two coin flips. 

 

 Since two of the outcomes (tails followed by heads and heads followed by tails) are both 

the same, i.e., both result in one heads and one tails (since the order is not important), this 

outcome has two possibilities for occurrence whereas the other outcomes, i.e., two tails in a row 

or two heads in a row, have only one possibility for occurrence. Thus, the outcome of “one heads 

and one tails” is twice as likely as “both tails” or “both heads” as shown in Figure 20. 

 



 
Figure 20: Probabilities for two coin flips 

 

Figure 21 charts the possible outcomes for one coin when flipped three times. Note that 

there are 8 different possibilities, all with equal probability (1/8). If we care only about the 

number of heads and tails and not the order in which the H’s and T’s have appeared then we can 

plot the result (shown in Figure 22).  

 
Figure 21: All possible outcomes for 3 coin-flips 

  

 
Figure 22: Graphing the probabilities of the outcomes of three coin flips 

 

 As we perform more coin flips, the probabilities form a bell shape that approximates the 

normal distribution, shown in Figures 23 and 24.  



 

 
Figure 23: Graphing the probabilities for 4, 5, and then 9 coin flips. 

 

 
Figure 24: Probabilities of getting a certain number of heads in 9 coin flips. Note the bell shape. 

 

Note that the probabilities for flipping a coin 9 times are the same as the probabilities for 

the 9th row of a Galton Board. Just as in the Galton Board example, flipping more coins (similar 

to adding more rows of pegs) will create a smoother bell curve, with the highest probabilities 

near the center and the lowest probabilities on the more extreme ends as illustrated in Figure 25. 

 



 
Figure 25: Probabilities shown for 37 consecutive coin flips. 

 

 If we could graph the probability outcomes for an infinite number of coin flips, the bell 

curve would become perfectly smooth. More precisely, this bell curve becomes the normal 

distribution. 

 

 As we graph the probabilities for more and more coin-flips, the graph begins to look 

more and more like a bell curve. If we could graph the probability outcomes for an infinite 

number of coin flips, the graph would look like an extremely smooth bell curve. 

 

 The number of possible outcomes for any given number of coin flips can be represented 

by the same pattern as the one used in the Galton Board – that is, Pascal’s Triangle, shown below 

(Figure 26) and previously in Figure 8. 

 
Figure 26: Pattern of possibilities for first 6 consecutive coin flips. 



 

C. Driving Example 

 

A car is driven in a city with a grid similar to the one shown in Figure 27, and the driver 

is only allowed to travel southbound or eastbound.  

 

Question: How many different paths can the driver take from point A to point B? 

 
Figure 27: Two points in a city grid: A is the starting point; B is the final destination (left), and 

an example of one possible path from A to B (right) 

 

The purple dots shown in Figure 28 mark destinations that only have one possible path 

from point A. Destination X has 2 possible paths from point A, down and to the right, or to the 

right and then down. Destination Y has 6 possible paths from point A, and Z has 20 possible 

different paths from point A.  

 

 



Figure 28: A city grid with key points marked 

 

Figure 29 shows the number of possible paths from point A to any other destination on 

the grid. So, the answer to the original question is that there are 10 different possible driving 

paths from point A to point B. 

 

 
Figure 29: City grid with number of possible paths shown 

 

 If we turn the grid diagonally and look at each row, as in Figure 30, a familiar pattern 

emerges. 

 
Figure 30: The grid, turned diagonally, shows a familiar pattern. 

 



This pattern is Pascal’s Triangle. Note that this pattern, shown below in Figure 31, is the 

same as in the case of the coin flip experiment and Galton Board example. 

 
 

Figure 31: Pascal’s Triangle 

  

III. Introducing Key Concepts 

 

A. What Does a Bell Curve Mean? 

 

The shape of a bell curve tells us about the probability of given outcomes. The higher 

sections have a higher chance of occurrence, so the “middle” outcomes are more likely (recall 

the near center columns in a Galton Board) and the extreme left and right (outlier) outcomes are 

the least likely. When viewing Figure 32, the blue highlighted area is related to the probability of 

that specific region, just like a specific outcome on a Galton Board or a particular number of 

“heads” outcomes in the coin flip experiment.  

 

 
Figure 32: The blue area represents the probability of a specific outcome.  

 

 More generally, we can find the probability of range of desired outcomes by integrating 

(taking the area under the bell curve between two points), as shown in Figure 33. While there are 



a few different types of bell curves, the normal distribution is the most common and the 

examples shown in this paper approximate the normal distribution. 

 

 
Figure 33: The shaded area represents the probability of getting outcomes in the range between 

A and B. 

 

B. More on the Normal Distribution 

 

 The normal distribution is a commonly used probability distribution, but it should be 

noted that not all bell curves are normal distributions. A graph of a normal distribution is a 

symmetrical bell-shaped curve that has its mean at the highest point, as shown in Figure 34, but 

also has a precise formula. The Figure also shows the standard deviation as related to the normal 

distribution.  

 

The pink section in Figure 34 is one standard deviation to the right and to the left of the 

mean. Approximately 68.2% of all data samples lie in this region. The pink and blue regions 

together represent two standard deviations in either direction from the mean, and represents 

approximately 95.4% of the data samples. Three standard deviations in either direction 

represents about 99.7% of all data samples. 

 

 The integral of the normal distribution curve, or the area under the curve, always equals 

to 1. This simply means that the probability of all possible events added together is 100%. 



 
Figure 34: Normal distribution and related probabilities 

Source: https://towardsdatascience.com/understanding-the-68-95-99-7-rule-for-a-normal-
distribution-b7b7cbf760c2 

 

IV. Real-Life Examples of the Normal Distribution 

 

A. Height of People 

 

Suppose a class has just started and one student is running late. What would students guess 

the height of this random student to be, assuming you know they’re male? Most students would 

likely guess a height somewhere between 5’5” (65 inches) and 6’2” (74 inches), but it’s doubtful 

that anyone would guess the student to be 8’ tall. Why is that?  

 

In the United States, male height appears to form a normal distribution [10] with the average 

being 5 feet, 9.3 inches (69.3 inches) and with a standard deviation of 2.94 inches. This means 

that about 68.2% of adult men in the US have a height between 5’&6.36” and 6’&0.24”. Very 

few people are either very tall or very short. Assuming we can plot it in a continuous manner, it 

is illustrated with the normal distribution in Figure 35.  

 

https://towardsdatascience.com/understanding-the-68-95-99-7-rule-for-a-normal-distribution-b7b7cbf760c2
https://towardsdatascience.com/understanding-the-68-95-99-7-rule-for-a-normal-distribution-b7b7cbf760c2


 
Figure 35: Chart showing male height. More people are near an “average” height while less 

people are very tall or very short. 

 

The total area under the curve equals 1, as shown in Figure 36, which means that any 

person “has a height” is a sure event.  

 
Figure 36: The total area under the curve equals 1 

 



 If we highlight and focus on one portion of the curve, like the yellow one shown in 

Figure 37, the area in that region represents the probability of someone having a height between 

the two values (for this figure, 74 and 80 inches). 

 
Figure 37: The area of the yellow region is the probability of someone having a height between 

the values of 74 and 80 inches. 

 

B. Intelligence and IQ 

 

Intelligence Quotient, commonly known as IQ, is a way to measure certain human 

intelligence. It is measured through the use of a few different standardized tests. Current IQ tests 

are developed so that the mean IQ is 100 and the standard deviation is 15 IQ points. This means 

about 68.2% of all people have an IQ between 85 and 115 (that is, one standard deviation from 

the mean in either direction), and about 95% of people have an IQ between 70 and 130 (two 

standard deviations in either direction from the mean). It is important to note that IQ is 

developed and adjusted so that the data will fit a normal distribution. 

 

V. Puzzle – Multiple Choice Exam 

 

Suppose you get to class one morning and find out that you have to take an exam you had 

forgotten about. You didn’t study at all for the exam, but there are 20 questions and each 

question has two options: true and false. If you select answers randomly, how many questions do 

you expect to get right? 

 



Since each question has two options, the chance of randomly selecting the right answer 

on any given question is 50%, or 0.5. Since we only care about how many questions are correct, 

and not which particular questions are correct, the order of the results doesn’t matter (i.e. for our 

purposes, getting only the first ten questions correct is the same as only getting the last ten 

questions correct). 

 

The average number of questions guessed correctly is the probability for each question 

multiplied by the number of questions, or 0.5*20. Thus, if you simply guess for each question 

you should expect to get 10 questions right. If we graph the probabilities for all 20 questions, it 

forms an approximation to normal distribution, since a true/false exam is really a binomial 

problem like the coin flip, and the sum of the probabilities is 1.  

 

VI. In-Class Experiment – Rolling a Die 

 

 A single die roll is similar in concept to a coin-flip, except that here there are 6 possible 

outcomes instead of two. Let us consider rolling a die 10 times. 

 

 When you roll a die once, you have an equal (1/6) probability for each number one 

through six. If you roll 10 dice, the sum of the ten outcomes will be a number between 10 

(assuming all ones) and 60 (assuming all sixes). The most likely outcomes are closer to values 

around 35, since the “middle” outcomes have more possibilities.  

 

VII. Assessment 

 

 The methods and examples shown in this paper were presented and assessed in a 

Probability and Statistics class taught by the first author of this paper at Florida Atlantic 

University. A questionnaire was distributed to students at the end of the lecture in order to gauge 

how receptive students were to the intuitive and engaging learning techniques presented in this 

paper. The responses are based on a class presentation that included examples from this paper. 

21 students filled out the questionnaire. A summary of the questionnaire can be found below, and 

the raw results can be found in Appendix A. 

 

 Figures A.1 and A.2 show the self-identified demographic breakdown of participating 

students. There is a fair amount of diversity, which is representative of the diversity at Florida 

Atlantic University and its engineering programs. Most students were 23 years old or younger, 

but there were a handful of older students. 

 

 Questions regarding student opinions about importance of the lecture or learning in 

general had five options: very important, important, moderately important, slightly important, 

and not important. Questions regarding opinions about effectiveness of various presentations or 

learning methods had the options: strongly agree, agree, neutral, disagree, or strongly disagree. 

 

 When asked about the “importance of being introduced to Probability/Statistics through 

visual examples,” one-third of the students responded with “very important” and an additional 



one-third responded with “important”. Only four students marked “slightly important,” and one 

student marked “not important.”  

 

 Students were generally unfavorable on their opinions of the importance of traditional 

and PowerPoint presentations. When asked about the “importance of learning using traditional 

presentations,” only 3 students marked important and none marked very important. Nine students 

responded moderately important, while nine more responded with either slightly important or not 

important. Answers to the question regarding the importance of learning Probability/Statistics 

through PowerPoint presentations were similar. 

 

 Students subjectively found that visual presentations helped them understand the concept 

of the normal distribution. This is apparent by the responses to the question: “How effective was 

the presentation on Probability/Statistics today?” and “What could have helped you to 

understand the concept of the normal distribution better?” most students wrote that they found 

the presentation effective, specifically the visual portions of the presentation. 

 

 These results, when taken as a whole, show that many students feel that they learn best 

through visual and engaging approaches. They generally are neutral to the idea of traditional and 

PowerPoint presentations, and prefer to be taught rather than teach themselves. 

 

VIII. Conclusion 

 

 This paper attempts to help students develop intuition towards the concept of the normal 

distribution by using a visual, intuitive, and engaging approach based on real-life examples. 

Multiple examples have been shown with the hope that instructors may find them useful and 

incorporate them in their teaching. It is not expected that instructors will use this work in its 

entirety, but instead that they will pick and choose the examples that they believe their students 

will benefit the most from. We hope that by using these examples more students will experience 

the “Aha” moment and these concepts will become clear to them. 

 

 Results of the assessment, shown in Appendix A, show very positive. Students felt that 

these examples helped them to learn and understand the normal distribution in a clear and 

intuitive way. 
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Appendix A – Assessment Results 
 

 
Figure A.1: Self-identified ethnic distribution 

 

 
Figure A.2: Self-identified age distribution 
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Figure A.3: Engineering Major 

 

 
Figure A.4: Student feedback on importance of understanding Probability/Statistics concepts 

 

 
Figure A.5: Student feedback on importance of visualizing Probability/Statistics 
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Figure A.6: Student feedback on importance of being introduced to Probability/Statistics 

concepts through visual examples 

 

 
Figure A.7: Student feedback on importance of hands-on activities in Probability/Statistics 

 

 
Figure A.8: Student feedback on importance of class engagement in Probability/Statistics 
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Figure A.9: Student feedback on importance of traditional presentations for learning 

 

 
Figure A.10: Student feedback on importance of PowerPoint presentations for learning 

Probability/Statistics 

 

 
Figure A.11: Student feedback on importance of learning Probability/Statistics through textbook 

reading 
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Figure A.12: Student self-assessment of mathematics competency 

 
Figure A.13: Student opinions on self-teaching 
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Appendix B – A Few Notes on Pascal’s Triangle 

 

1. Notable Features 

Pascal’s Triangle in the simplest sense, is a particular number pattern. Pascal’s Triangle has 

several notable features. The first is the way in which diagonal rows increase. The first diagonal 

row is all ones. The second is counting starting from one. The third row is triangular numbers (1, 

3, 6, 10, etc.). Note that since the triangle is symmetrical, this is true for starting from either the 

left or the right.  

 

Another notable feature is that this number pattern can be used to find the probability for 

problems like the location of a marble on a Galton Board, coin flip probabilities, or the driving 

example (more specifically, it can be used to find probabilities for binomial problems). To do 

this, select the number at the location where you want to know the probability and divide by the 

sum of the numbers in that row. The sum of any row is also 2 raised to the power of the row 

number minus one. For example, the probability for a marble to arrive at the middle location in 

row 5 of a Galton Board is 6/(24) or 3/8. 

 

As another example, to find the probability of getting a number of heads for 2 coin flips, look 

at the third row. The options are 0, 1, or 2 heads results. Since the numbers in the third row are 1, 

2, and 1, this means the probability of getting 0 heads is 1/(1+2+1) = ¼ = 0.25. The probability 

of getting 1 heads result is 2/4 = 0.5, and the probability of getting 2 heads results is also 0.25. 

 

2. Combinations 

Figure B.1 shows a different way to write the numbers of Pascal’s Triangle.  



 
Figure B.1: Pascal’s Triangle representing combinations instead of numbers 

 

The symbols shown in Figure B.1 show “combinations,” and represent the chances of 

success, using the following equation: 

 
This equation solves for the probability of “x” successes in “n” trials where “p” is the 

probability of success. When we see  as a chance of success, it means 1 success in 3 

trials, or which is 6/2 or 3, so there are 3 opportunities for that outcome. When 

multiplied by the chance of success (50% success / 50% failure for the Galton board or coin 

flips), we get 3 * (0.5)3 which is 0.375. So, for example, the probability of getting 1 “heads” 

result in 3 coin flips is 0.375. 

 

Since the sum of each row is equal to 2n-1, shown in Figure B.2, we should also note that: 

 



 
Figure B.2: Each row is equal to 2n-1 

 

It should also be noted that since, as previously discussed, each number is the sum of the two 

numbers above it, we can show the following, shown in Figure B.3: 

 
Figure B.3: A general case for combinations in Pascal’s Triangle 

 

3. Polynomials 

 

 A pattern that derives from the previous figure, shown in Figure B.4, can help us find the 

probability for any point on Pascal’s Triangle.  For each level (n), starting with 0, the probability 

for any point is x * (0.5)n where x is the number from Pascal’s Triangle. Note that the sum of all 

probabilities in any given level is equal to one. That is to say, some outcome at each level is 

guaranteed. 



 
Figure B.4: The probability for any point on Pascal’s Triangle is given by x * (0.5)n. 

 

Consider the expression (a+b)n, where n counts upward from zero. Figure B.5 shows these 

expanded expressions up to n = 4, and for the general case n. When we consider the coefficients 

of each term, we see that it once again forms Pascal’s Triangle. 

 
Figure B.5: Expansion of the expression (a+b)n. Note that the coefficients are “binomial” and 

represent Pascal’s Triangle. 

 

So why do all coefficients add up to 2n-1? 



 
 Similarly, (a+b)n has 2n coefficients that can be condensed to (n+1) coefficients. 

 

 


